Chapter 5

NONLINEAR PROGRAMMING - MULTIVARIABLE OPTIMIZATION
PROCEDURES

Introduction

This part of optimization is the most dynamic topic. Applications are varied and appear in
almost every field. Over the past three decades, the capability to locate local optima of a nonlinear
economic model of a plant and to comply with several thousand constraints associated with the
process models, unit capacities, raw material availabilities and product demands has been
developed in proprietary codes of major corporations (1). Generally available nonlinear codes for
large problems have grown from university and government research programs on numerical
experimentation with algorithms, and high-level modeling language for mathematical
programming and optimization, such as GAMS are now available. These modeling languages
consist of a language compiler and a stable of integrated high-performance solvers tailored for
complex, large scale modeling applications, and large maintainable models can be adapted quickly
to new situations.

The capability to solve optimization problems with increasing numbers of constraints has
grown with improvements in computer hardware and software. However, there still is debate
about which algorithms and/or computer codes are superior; and Lasdon (3) has recommended
having several codes available which implement some of the more successful methods.

The effectiveness of a multivariable optimization procedure depends on several,
interrelated things. These are the optimization theory, the algorithms to implement the theory, the
computer program and programming language used for computations with the algorithms, the
computer to run the program, and the optimization problems being solved. For example, in the
area of multivariable, unconstrained search methods; there are several hundred algorithms that
have been used with varying degrees of success. They have been programmed in FORTRAN
mainly, run on various types of computers and applied to a range of problems from simple
algebraic expressions to plant simulation.

This chapter describes unconstrained and constrained multivariable search algorithms that
have been successful in solving industrial optimization problems. Examples are given to illustrate
these methods, and references to sources for computer programs are given for the methods. Also,
references to recent and classical texts and articles are included for further information. For
example, a two-volume set of books by Fletcher (4,5) is a recent comprehensive compilation of
the mathematical aspects of nonlinear programming methods, as are the equally recent books by
Gill, Murray and Wright (6), McCormick (7), and Bertsedkas (50). The books by Reklaitis, et. al.
(15), Vanderplaat (24), Haftka and Kamat (54) and Dennis and Schnabel (55) describe the theory
and recent computational practice, and Avriel's book (9) gives a broad mathematical coverage of
the subject. Finally, Wilde's book (10), Optimum Seeking Methods, was the first book devoted to
the subject, and it still contains valuable information in a very readable style.

168

In general form the nonlinear optimization problem can be stated as:

Optimize: (x) (5-1)
Subjectto: fi(x)=0 fori=1,2,..,h
fix)>0 i=htl,..,m

There are n independent variables, x = (x1, x2, ... X,), m constraint equations of which % are equality
constraints. Also, the values of the x;'s can have upper and lower bounds specified. For this general
form Avriel (11) points out that there is no unified approach to obtain the optimal solution of the
nonlinear optimization problem that is comparable to the unifying role of the Simplex Method in
linear programming. He states that the Simplex Method can efficiently solve a linear program in
thousands of variables, but the question of how to minimize an unconstrained nonlinear function
in more than a few variables is an important one.

There are three classes of procedures for multivariable optimization that are applicable to
nonlinear economic models with nonlinear constraints. These are multivariable search methods,
multivariable elimination procedures, and stochastic methods. Multivariable search methods have
been the most important for process optimization and are discussed in detail. The capabilities and
limitations of the other three methods are given in a summary form with reference to other sources
for more complete information.

Multivariable search methods can be thought of as encompassing the theory and algorithms
of nonlinear programming along with the associated computational methods. These procedures
use algorithms that are based on geometric or logical concepts to move rapidly from a starting
point away from the optimum to a point near the optimum. Also, they attempt to satisfy the
constraints associated with the problem and the Kuhn-Tucker conditions, as they generate
improved values of the economic model.

Multivariable elimination procedures are methods that reduce the feasible region
(hypersurface of the independent variables) by discarding regions that are known nof to contain
the optimum (interval elimination). Some of these are similar to minimax single variable search
methods in that they eliminate intervals on each of the independent variables. However, these
methods are restricted to certain types of functions, e.g. strongly unimodal functions. Also, to
locate the best value of the profit function with these procedures, the reduction in the range of the
independent variables increases as the number of independent variables increases. This effect has
been referred to as the curse of dimensionality, and it has been illustrated by Wilde (10). The
single variable minimax interval elimination procedures are not useful in multi-dimensions since
only line segments are eliminated in those procedures, and the number of lines in a plane is very
large.

The more successful stochastic strategies include random search, genetic algorithms and
simulated annealing. Random search is a stochastic method that places experiments randomly in

169

the feasible region after it has been divided into a grid of discrete points. Knowing the number
and location of the grid points, a set of experiments is placed randomly. Then it can be determined
with a certain probability that one of these points has a value of the profit function that is in a
specified best fraction (top x%). Unimodality is not required, and the number of independent
variables is not directly a factor. In adaptive or creeping random search, experiments are placed
randomly in a selected section of the feasible region, and a best value is located. Then another
section of the feasible region is placed around this best value, and random experiments are placed
again. This procedure is repeated until a stopping criterion is met. In essence, random search is
used as a multivariable search method.

Stochastic approximation procedures are methods that apply to economic models that
contain random error, e.g. the plant instead of a computer simulation of the plant. These techniques
are similar to multivariable search methods, but they move slowly to avoid being confounded by
the random error in the values of the economic model.

These three methods are described such that they can be applied to industrial problems.
The most important and widely used multivariable search methods are given first, and then the
other three procedures are discussed.

Multivariable Search Methods Overview

Wilde (10) has proposed a strategy for multivariable search methods that contains some
important ideas. This strategy has an opening gambit, a middle game and an end game that is
analogous to the strategy of chess. In the opening gambit a starting point is selected. Then the
middle game involves moving from this starting point to a point near the optimum as rapidly as
possible. In the end game a quadratic fit to the economic model is performed to avoid stopping at
a saddle point or sharp ridge.

Generally, selecting a starting point is not a problem for the current design or plant
operating conditions are usually known. If they are not available, then midpoints between the
upper and lower limits on the independent variables can be used, and Wilde (10) has suggested
others such as the centroid and the minimax.

In the middle game a multivariable search method is used that moves rapidly from the
starting point to a point that appears to be an optimum. Only enough local explorations are
performed at each step to obtain information useful to locate future experiments and to keep the
method moving rapidly toward the optimum. The objective is to attain a series of improved values
of the economic model with a minimum of computational effort.

The end game takes over once the middle game procedure has located what appears to be
an optimum. A quadratic fit to the economic model at this best point is performed to determine if
it is an optimum rather than a saddle point or a ridge. The strategy has the middle game continue
if an optimum is not located or stops if one is found based on the quadratic approximation.

170

With these ideas in mind, multivariable search methods will be described that are middle
game procedures applicable to unconstrained and constrained problems. One of the more
frequently encountered unconstrained optimization problems is that of a nonlinear least-squares
fit of a curve to experimental data. However, industrial optimization problems are constrained
ones, almost without exception. Moreover, it will be seen that some constrained methods convert
the problem into an unconstrained one, and then an unconstrained procedure is employed. Also,
some of the more effective middle game procedures develop the information for the quadratic fit
of the end game as they proceed from the starting point.

There are several hundred unconstrained multivariable search methods, but most of them
are variations on a few concepts. These concepts can be used to classify the methods. Many
techniques may be called geometric methods for they use a local, geometric property to find a
direction having an improved value of the economic model. Typically, derivative measurements
are required. Two examples are the direction of steepest ascent (gradient search) and quadratic fit
to the profit function (Newton's method). Other techniques can be called logical methods for they
use an algorithm based on a logical concept to find an improved direction of the profit function.
Two examples are pattern search and flexible polyhedron search. Typically, derivative
measurements are not required; and these types of procedures also have been called function
comparison methods (6). However, two methods that would not fit into these two categories
readily are extensions of linear and quadratic programming. Here, linear programming, for
example, is applied iteratively to a linearized version of the nonlinear constrained problem to move
toward the optimum from a starting point. The methods are called successive, or sequential, linear
programming and successive, or sequential, quadratic programming.

Another equally valid way to classify unconstrained methods has been given by Gill,
Murray and Wright (6). These categories are Newton, quasi-Newton and conjugate gradient types,
each with and without first or second derivatives, and functional comparison methods. Also, some
of the quasi-Newton methods are called variable metric methods, and some of the conjugate
gradient methods are called conjugate direction methods. They are all geometric methods, except
for the functional comparison methods that are logical methods.

There are essentially six types of procedures to solve constrained nonlinear optimization
problems. Four of these methods convert the constrained problem into an unconstrained one, and
then an unconstrained search procedure is applied. These four types are penalty or barrier
functions methods, the augmented Lagrange functions, generalized reduced gradients and feasible
directions (or projections) sometimes called methods of restricted movement. The other two are
the previously mentioned procedures of successive (or sequential) linear and quadratic
programming.

Unconstrained Multivariable Search Methods

In this section on unconstrained multivariable search methods, several of the most effective
and widely used methods are described. First, the quasi-Newton methods are given which have
proved to be the most effective and more elaborate of the procedures. Then conjugate gradient
and conjugate direction methods are illustrated with two examples. Finally, the popular function

171

comparison procedure, pattern search, is presented, and assessments of these methods are
presented as related to problems with constraints.

Before discussing the specifics of the methods, it is necessary to describe the desirable
features of an algorithm. As mentioned previously, the algorithm should generate a sequence of
values of xx that move rapidly from the starting point X to the neighborhood of the optimum x".
Then the iterates xx should converge to x* and terminate when a convergence test is satisfied.
Therefore, an important theoretical result for an algorithm would be a theorem that proves the
sequence of values x; generated by the algorithm converges to a local optimum. For example, the
following theorem from Walsh (26) provides sufficient conditions for convergence of the method
of steepest ascent (gradient search).

If the limit of the sequence {Xi} of Xk+1 =Xk + aVy(Xy) is X* for all X in a suitable neighborhood
of xX*, then y(x) has a local minimum at x = x* .

The proof of this theorem is by contradiction.

As will be seen, the method of steepest ascent (gradient search) is not an effective method

even though it will converge to an optimum eventually. The algorithm tends to zigzag, and the
rate of convergence is significantly slower than other algorithms. Consequently, the rate (or order)
of convergence of an algorithm is another important theoretical property. The rate of convergence
of a sequence xx for an algorithm as described by Fletcher (4) is in terms of the norm of the
difference of a point in the sequence Xk and the optimum x” i.e., || Xi - X*¥ || .
If || Xi+1 - X¥ || / || Xk - X* || — a, then the rate of convergence is said to be linear or first-order if a
> 0. Itis said to be superlinear if a = 0. For an algorithm, it is desirable to have the value of a as
small as possible. For some algorithms it is possible to show that || xk+1 - x*|| ¥ [|xx - x*[|>— a,
and for this case the rate of convergence is said to be quadratic or second-order. For the method
of steepest ascent Fletcher (4) states that the rate of convergence is a slow rate of linear
convergence that depends on the largest and smallest eigenvalues of the Hessian matrix.

Another criterion often used to compare algorithms is their ability to locate the optimum
of quadratic functions. This is called quadratic termination. The justification for using this
criterion for comparison is that near an optimum the function can be "adequately approximated by
a quadratic form," according to Bazaraa and Shetty (56). They claim that an algorithm that does
not perform well in minimizing a quadratic function probably will not do well for a general
nonlinear function, especially near the optimum.

There are several caveats about relying on theoretical results in judging algorithms. One
is that the existence of convergence and rate of convergence results for any algorithm does not a
guarantee good performance in practice according to Fletcher (4). One reason is that these
theoretical results do not account for computer round-off error that may be crucial. Both numerical
experimentation with a variety of test functions and convergence, and rate of convergence proofs
are required to give a reliable indication of good performance. Also, as discussed by Gill, et al.
(6) conditions for achieving the theoretical rate of convergence may be rare since an infinite
sequence does not exist on a computer. Moreover, the absence of a theorem on the rate of

172

convergence of an algorithm may be as much a measure of the difficulty of the proof as the
inadequacy of the algorithm according to Gill, et al.(6).

Quasi-Newton Methods: These methods begin the search along a gradient line and use
gradient information to build a quadratic fit to the economic model (profit function).
Consequently, to understand these methods it is helpful to discuss the gradient search algorithm
and Newton's method as background for the extension to the quasi-Newton algorithms. All of the
algorithms involve a line search given by the following equation.

Xi+1=Xk - o V Hy y(Xx) (5-2)

For gradient search Hy is I, the unit matrix; and a is the parameter of the gradient line. For
Newton's method Hy is the inverse of the Hessian matrix, H''; and o is one. For quasi-Newton
methods Hy is a series of matrices beginning with the unit matrix, I, and ending with the inverse
of the Hessian matrix, H!. The quasi-Newton algorithm that employs the BFGS (Broyden,
Fletcher, Golfarb, Shanno) formula for up-dating the Hessian matrix is considered to be the most
effective of the unconstrained multivariable search techniques according to Fletcher (5). This
formula is an extension of the DFP (Davidon, Fletcher, Powell) formula.

Gradient Search: Gradient search or the method of steepest ascent was presented in
Chapter 2 as an example of the application of the method of Lagrange multipliers. However, let
us consider briefly another approach to obtain this result that should give added insight to the
method. First, the profit function, y(x), is expanded around point x; in a Taylor series with only
first order terms as:

maximize: y(x) = y(x,)+ E 0y(x,) (x;=x;) (5-3)
0%,
In matrix notation, the above equation has the following form:
maximize: y(x) = y(x,)+ V' y(x,)(x - x,) (5-4)

Then to maximize y(x), the largest value of Vy(x,)" (x - x,) s to be used. When the largest
value of V”y(x,)(x —x,) 1s determined, it has to be in the form of an equation that gives the way

to change the individual x;'s to move in the direction of steepest ascent. This term can be written
in vector notation as the dot product of two vectors.

Vy(x,)' (x —x,) = Vy(x,)*(x - x,) = |Vy(x,)|[(x — x,)| cos @ (5-5)

Vy(x,)
at xx; and the magnitude of the vector (x - xx) is to be determined to maximize the dot product of
the two vectors. In examining Equation 5-5, the largest value of the dot product is with the value

The magnitude of the gradient of y(xx) at point X, , 1s known or can be measured

173

of 6 = 0 where cos (0) = 1. Consequently, the two vectors Vy(x,) and (x—uxy) are collinear and
are proportional. This is given by the following equation.

x-x, =a Vy(x,) (5-6)

where a is the proportionality constant and is also the parameter of the gradient line. Therefore,
the gradient line, Equation 5-6 can be written as:

x=x,+a Vy(x,) (5-7)

The plus sign in Equation 5-7 indicates the direction of steepest ascent, and using a negative
sign in the equation would give the direction of steepest descent. However, these directions are
actually steep ascent (descent) rather than steepest ascent (descent). Only if the optimization
problem is scaled such that a unit change in each of the independent variables produces the same
change in the profit function will the gradient move in the direction of steepest ascent. The
procedures for scaling have been described in detail by Wilde (10) and Wilde and Beightler (12),
and scaling is a problem encountered with all search methods.

Comparing Equation 5-7 to Equation 5-2, it is seen that AH, = I, the identity matrix. An
open-ended line search on a is required to locate the optimum along the gradient line.

The following short example illustrates the gradient method for a simple function with
ellipsoidal contours. The zigzag behavior is observed as the algorithm moves from the starting
point at (2, -2,1) to the minimum at (0,0,0) of a function that is the sum of squares.

Example 5-1

Search for the minimum of the following function using gradient search starting
at point xo = (2,-2, 1).

y=2x12 + x2% + 3x3?
The gradient line, Equation 6-7, for point Xo is:
x=x,+aVy(x,)
and the three components of this equation are:

X1 =Xx10 + o O¥(Xo)
ox1

X2 = x20 + o O¥(Xo)
0x2
174

X3 =Xx30 + o O¥(Xo)
Ox3

Evaluating the partial derivatives gives:
oy =4x oy(xo) = 8 0y =2x2 ov(x0)=-4 Ov=06x3 Ov(x0) =6
ox1 ox1 ox2 ox2 ox3 ox3
The gradient line is:
x1=2+8a
x2=-2-40
x3=1+6a
Using the gradient line equations, y(x1,x2,x3) is converted into y(a) for an exact line search:
y =22+ 8a) + (-2 - 4a)* + 3(1 + 6a)?
and
dy =322+ 8a) - 8(-2 -4a) +36(1 + 6a) =0 — o’ =-0.23016
do
Computing point x; using a” = -0.23016 gives:
x1=2+8(-0.23016) = 0.15872
x2=-2-4(-0.23016) = 1.0794
x3=1+6(-0.23016) =-0.38096

Continuing, the partial derivatives are evaluated at x; to give:

Oy (x1) =4(0.15892) = 0.63488 Oy (x1) =2(1.0794) =2.1588
Ox1 ox2

Oy (x1) = 6(-0.38096) = -2.2858
Ox3

The gradient line at x; is:

x1=0.15872 + 0.63688a

175

x2=1.0794 + 2.1588a
x3=-0.38096 - 2.2858a

The value of a which minimizes y(a) along the gradient line from x; is computed as was done
previously, and the result is o = -0.2433. Using this value of o the point x, is computed as
(0.004524, 0.5542, 0.1752). Then, the search is continued along the gradient line from x; to xs.
These results and those from subsequent application of the algorithm are tabulated below along
with the previous results.

Iteration X| X2 X3 o y(x)

0 2 -2 1 15.0
-0.23016

1 0.1587 1.0794 -0.3810 1.6510
-0.2433

2 0.004254 0.5542 0.1752 0.3993
-0.2568

3 -1.2x10* 0.2696 -0.0947 0.09959
-0.2436

4 3.4x10¢ 0.1383 0.04371 0.02486
-0.2568

5 0 0.06727 -0.02365 0.006203
-0.2435

6 0 0.03452 0.01090 0.001548
-0.2570

7 0 1.68x1073 -5.90x1073 2.8x10*
-0.4999

8 0 3.0x10¢ 1.0x10¢ 1.2x10°1

A stopping criterion, having the independent variables be less than or equal to 1x10-3, was used.
Also, a criterion on the value of y(x) could have been used.

Notice that the value of the parameter of the gradient line a is always negative. This
indicates the algorithm is moving in the direction of steepest descent. As above results show,
gradient search tends to take a zigzag path to the minimum of the function. This is typical of the
performance of this algorithm.

Newton’s Method: In the development of Newton's method, the Taylor series expansion
of y(x) about xx includes the second order terms as shown below.

)) n a n n 82
optimize: y(x) = y(x)+ D2 (0 1y $P Iy yxmx,) (548)
‘a ox; i o 0X,0X;

A more convenient way to write this equation is in matrix notation:

176

optimize: y(x) = y(x,)+ VT)’(xk)(x —x)+ 4 (x - xk)TH(x -x) (59

where H is the Hessian matrix, the matrix of second partial derivatives evaluated at the point x;,
and (x - xx)7 is the row vector which is the transpose of the column vector of the difference
between the vector of independent variables x and the point xx used for the Taylor series
expansion.

The algorithm is developed by locating the stationary point of Equation 5-8 or 5-9 by
setting the first partial derivatives with respect to x1, x2, ..., X, equal to zero. For Equation 5-8 the
result is:

8y 8y (xk) y (x k)
x -X 0
ox, ox, E 9x,0x))=
(5-10)
ay ay(xk) J y(xk
-X 0
ox, X, E 9x,,0x;)=
which when written in terms of the Hessian matrix is:
Vy(xk) + H(x - x4) =0 (5-11)

Then solving for x, the optimum of the quadratic approximation, the following equation is obtained
which is the Newton's method algorithm.

x =x; - H! Vy(xk) (5-12)

Comparing Equation 5-12 to Equation 5-2, it is seen that a = -1 and Hx = H'!, the inverse
of the Hessian matrix. Also, a line search is not required for this method since o = -1. However,
more computational effort is required for one iteration of this algorithm than for one iteration of
gradient search since the inverse of the Hessian matrix has to be evaluated in addition to the
gradient vector. The same quadratic function of the gradient search algorithm example is used to
illustrate Newton's method in the following example, and it shows the additional computations
required.

177

Example 5-2

Search for the minimum of the function from Example 6-1 using Newton's method starting at
point xo = (2, -2, 1).

¥y =2x1% + x2% + 3x3?
From the previous example the gradient is:
Vy(x0)" = (8, -4, 6)

The Hessian matrix formed from the second partial derivatives evaluated at xo and its inverse is:

4 0 0 1/4 0
H,=| 0 2 0 H'=| 0 1/2 0
006 0 1/6

The algorithm is given by Equation 5-12, and for this example is:

X, o) /4 0 0 8 0
x, |=| 2 |-] 0 172 0 || -4 =0
X, 1 0 0 16| 6 0

The minimum of the quadratic function is located with one application of the algorithm.

In Newton's method, if x is not close to x*, it may happen that H! is not positive definite;
and then the method may fail to converge in this case (26). However, if the starting point X, is
sufficiently close to a local optimum x”, the rate of convergence is second order as given by the
following theorem from Fletcher (4).

If xx is sufficiently close to X" for some k, and if H" is positive definite, then Newton's method is
well defined for all k and converges at a second-order rate.

The proof of the theorem has x in the neighborhood of x* and uses induction.

Newton's method has the property of quadratic termination as demonstrated by the example
above. It arrives at the optimum of a quadratic function in a finite number of steps, one.

However, for nonlinear functions generally Newton's method moves methodically toward
the optimum; but the computational effort required to compute the inverse of the Hessian matrix

178

at each iteration usually is excessive compared to other methods. Consequently, it is considered
to be an inefficient middle game procedure for most problems.

Quasi-Newton Methods: To overcome these difficulties, quasi-Newton methods were
developed which use the algorithm given by Equation 5-2. They begin with a search along the
gradient line, and only gradient measurements are required for Hx in subsequent applications of
the algorithm given by Equation 6-2. As the algorithm proceeds, a quadratic approximation to the
profit function is developed only from the gradient measurements; and for a quadratic function of
n independent variables, the optimum is reached after n applications of the algorithm.

Davidon developed the concept in 1959 and Fletcher and Powell in 1963 extended the
methodology. As discussed by Fletcher (4) there have been a number of other contributors to this
area, also. The DFP (Davidon, Fletcher, Powell) algorithm has become the best known of the
quasi-Newton (variable metric or large-step gradient) algorithms. Some of its properties are
superlinear rate of convergence on general functions, and quadratic termination using exact line
searches on quadratic functions (4).

A number of variations of the functional form of the matrix Hi of Equation 5-2 with the
properties described above have been developed, and some of these have been tabulated by
Himmelblau (8). However, as previously stated, the BFGS algorithm that was developed in 1970
is preferable to the others; and this is currently well accepted according to Fletcher (4). The
following paragraphs will describe the DFP and BFGS algorithms and illustrate each with an
example. Convergence proofs and related information are given by Fletcher (4) and others (6, 7,
8, 9).

The DFP algorithm has the following form of Equation 5-2 for minimizing the function y(x).
Xi+1= Xk - Ok +1 Hi V y(X) (5-13)

where ox+1 is the parameter of the line from xi to locate x4+ at the optimum, and Hy is given by
the following equation (12).

H,=H;1+ Ar+ By (5-14)

The matrices Ax and By are given by the following equations.

_ (X, =X,)0 =X,)" (5-15)
(xk - xk_l)T (Vy(xk - Vy(xk_l))

k

5 o TH [V - VG,)] [Vye) - Vyee)] H,
[Vy(eo) = Ve,)] Hyy [Vyee) = Vy(x,,)]

(5-16)

179

The algorithm begins with a search along the gradient line from the starting point xo as
given by the following equation obtained from Equation 5-13 with k = 0.

X] = X0— aHovy(Xo) (5-17)

where Ho = I is the unit matrix. This equation is the same as Equation 5-7 for the gradient line.
The algorithm continues using Equation 5-13 with updates using Equations 5-15 and 5-16
until a stopping criterion is met. However, for a quadratic function with » independent variables
the method converges to the optimum after » iterations (quadratic termination) if exact line

searches are used.

The matrices Ax and Bx have been constructed so their sums would have the specific
properties shown below (12).

EAk -H" (5-18)
k=0
EBk ——H,=-1I (5-19)
k=0

The sum of the n matrices Ay generates the inverse of the Hessian matrix H! to have Equation 5-
13 be the same as Newton's method, Equation 5-12, at the end of n iterations. The sum of the
matrices By generates the negative of the unit matrix I at the end of n iterations to cancel the first
step of the algorithm when I was used for Ho in Equation 5-17.

The development of the algorithm and the proofs for the rate of convergence and quadratic
termination are given by Fletcher (4). Also, the procedure is applicable to and effective on
nonlinear functions. According to Fletcher (4) for general functions it preserves positive definite
Hi matrices, and thus the descent property holds. Also, it has a superlinear rate of convergence,
and it converges to the global minimum of strictly convex functions if exact line searches are used.

The following example illustrates the use of the DFP algorithm for a quadratic function
with three independent variables. Consequently, the optimum is reached with three applications
of the algorithm.

Example 5-3 (14)

Determine the minimum of the following function using the DFP algorithm starting
at xo! = (0,0,0).

minimize: 5x1% + 2x2% + 2x3% + 2x1x2 + 2x2x3 - 2x1X3 - 6X3

180

Performing the appropriate partial differentiation, the gradient vector Vy(x) and the Hessian
matrix are:

10x, +2x, - 3x, 10 2 -2
V(x) = Vy(x) = 2x, +4x, +2x, H=| 2 4 2
-2x,+2x,+4x,-6 -2 2 4
Using Equation 6-17 to start the algorithm gives:
Xy 0 1 00 0 0 0
X, |=| O |- O 1 O 0 [=| 0 |=
x 0 0 0 1 -6 6, 3/2
31

The optimal value of a; was determined by an exact line search with Equation 6-17 using x; =0,
x2 =0, x3 = 60, as follows.

y(ar) = 2(601)? - 6(601) = 72012 - 36011
dy/doui=1440; -36=0 — a1 =%
The value of x; is computed by substituting for a; in the previous equation.
xi17=(0, 0, 3/2) Vyxi1)T=(-3,3,0) Vy(x0)'=(0,0,-6)
The algorithm continues using Equations 5-13 and 5-14 for /=1.

x2=x1 - a2 Hi Vy(x1)

or
X, 0 56 1/6 1/3 3 2a, 1
X, |=| 0 |-a| V6 5/6 -13] 3 |=| -2a, |=| -1
X, 3/2 1/3 -1/3 7/12 || O 3/2+2a, 5/2

where oy is determined by an exact line search as shown below.
Hi=Ho+ A +B;
and A and B are given by Equations 5-15 and 5-16.

181

32 N I
A = 3 (=00 o
[003/2] 6 0 0 1/4

1 0 0f-3 1 0 0
01 0f3[-336lo10
| 16 16 13
00 1|6 00 1
B = L =116 -1/6 -1/3
N 1/3 /3 -2/3
[-3 3 6]l0o 1 0
00 1]
100 (00 0] [-1/6 1/6 1/3 5/6 1/6 1/3
H =0 1 0|+[0 0 0|+[1/6 —1/6 —13|=|16 5/6 -1/3
00 1] |00 bl Y3 -3 =23 [y3 -13 712

The optimal value of o> is determined by an exact line search as follows.
y(a2) = 1202 - 1202 +9/2 dy/dox=2402-12=0-02="2
The value of x; is computed by substituting for a» in the previous equation.
x''=(1,-1,5/2) Vy(x2)'=(3, 3, 0)
The computation of x3 uses Equations 5-13 and 5-14 as follows:

X3 =x2 - a3 H2 Vy(x2)

and
1/16 - 1/6 1/16
H, =H + A4, +B =|-16 29/30 -17/30
1/6 —17/30 37/60
where

182

1 6 6 —1/6 16
4, = |-1|0 ‘1%_1 0 =|-ve ve -vs
1 0 /6 —1/6 16
566 16 13 6 56 16 13
16 5/6 —13]06 0 o]-16 16 -13
6o 56 13| L
13 —13 712 |0 16 —1/6 1/6
B, = _ |16 —130 - 115
566 16 - 13]3
~13 —1/15 - 215
[6 0 0]1/6 56 -1/3|3
3 —13 7120
X, 1 1/6 -1/6 1/6 | 3 1 1
x, |=| -1 |-a| -1/6 29/30 -17/30 || 3 |=| -1-12a,/5 |=| -2
. 5/2 1/6 17/30 37730 || 0 | | 5/246a,/5 3

The optimal value of a3 was determined by an exact line search as follows:

J(03) = 5+ 2(1 + 1205/5)2 + 2(5/2 + 6a3/5)% - 2(1 + 1204/5)
2(1 + 12a3/5)(5/2 + 6a3/5) - 2(5/2 + 603/5) - 6(5/2 + 6a3/5)

Setting dy(a3)/das = 0 and solving for a3 gives o3 = 5/12 and x3” = (1, -2, 3) which is the value of
the function at the minimum.

In the preceding example exact line searches were used to have the DFP algorithm proceed
to the optimum. However, in optimization problems encountered in industrial practice exact line
searches are not possible; and numerical single variable search methods must be used, ones such
as golden section search or the quadratic method. However, the previously mentioned BFGS
method will converge to the optimum of a convex function even when inexact line searches are
used. Also, this global convergence property has not been demonstrated for other algorithms like
the DFP algorithm according to Fletcher (4). Consequently, this may be part of the reason that
the BFGS algorithm has demonstrated generally more satisfactory performance than other methods
in numerical experiments, even though it is a more elaborate formula. The BFGS matrix up-date
formula comparable to Equations (5-14), (5-15) and (5-16) as given by Fletcher (4) is:

]+[1+ Y:IT{kYk][61;5Z:|
O Vi O Vi

Hka‘SkT + 6k7’ZHk
O Vi

Hk+1 =Hk _|:

O =X, — X, (5-20)
Vi = V(%) = Vy(x,)

183

This equation is used in place of Equation 6-14 in the algorithm given by Equation 5-13.
The procedure is the same in that a search along the gradient line from starting point Xo is conducted
initially according to Equation 5-17. Then the Hessian matrix is updated using Equation 5-20, and
for quadratic functions the method arrives at the minimum after n iterations. The following
example illustrates the procedure for the BFGS algorithm using the function of Example 5-3.
Example 5-4 (14)

Determine the minimum of the following function using the BFGS algorithm starting at xo =
(0,0,0).

Minimize: 5x1% + 2x2% + 2x3%2 + 2x1x2 + 2x2x3 - 2x1X3 - 6X3

The first application of the algorithm is the same as Example 5-3 that is a search along the
gradient line through xo = (0,0,0). These results were:

xi11=(0, 0, 3/2) Vyxi)"=(-3,3,0)
xo' = (0, 0, 0) Vy(x0)" = (0, 0, -6)
The algorithm continues using Equations 5-13 and 5-20 for k=I.

x2 =x1 - o2 Hi Vy(x1)

or
X 0 Lo 12 | -3 3a, 1
X, |=| 0 |-a| 0 1 12| 3 |=| -3a, |=| -1
X, 3/2 /2 -1/2 3/4 || O 3/2 +3a, 5/2
where

H=H, - HOYO‘SOT+‘50V§H0}+[1+Vng}’kH‘so‘soT]

5kTVk 50TV0 50T)/o
1 00 0 -3
H,=| 0 10 Oy =% —x, = 0 Yo =Vy(x)-Vy(x,)=| 3
0 0 1 3/2 6
&7 =9 Vo Hyy, = 54

184

1 00 0 0 -1/2 00 O 1 0 1/2
H= 01 0/|-] O 0O 1/2 [+ 0 0 O |=] O I -1/2
0 0 1 -1/2 1/2 2 0 0 7/4 1/2 -1/2 3/4

The optimal value of o, is determined by an exact line search using x1 = 30z, x2 = -302, x3 =3/2 +
302 in the function being minimized to give:

y=270% - 180z + 4% dy Idas =540, -18=0 — ax = 1/3
The value for x; is computed by substituting for a, in the previous equation.
x''=(1,-1,5/2) VT(x2)= (3, 3, 0)
The computation of x3 repeats the application of the algorithm as follows:

X3 =X2 - 03 H2 Vy(x2)

or

X3 1 /6 -1/6 1/6 || 3 1 1

X, |=| -1 |-a| -6 13/6 -7/6 || 3 |=| -1-6a, |=| -2

X, 5/2 /6 -7/6 11/12 || O 5/2 +3a, 3
where

7=(1,-1,1) v1'=(6,0,00 &:’y1=6 yi'H;y1=36

10 12 2 -1 32 76 -1/6 /6 1/6 -1/6 1/6
H=| 0 1 -121]-| -1 0 -12 |+ -7/6 7/6 -7/6 |=| -1/6 13/6 -7/6

12 -1/2 3/4 32 -12 1 /6 -1/6 /6 1/6 -7/6 11/12

The optimal value of a3 is determined by an exact line search using x13 = 1, x23 = -1-603, x33 = 5/2
+ 302 in the function being minimized to give y(az). The value of az = 1/6 is determined as
previously by setting dy(a3)/dos = 0, and the optimal value of x3” = (1,-2,3) is computed which is
the value of the function at the minimum.

A program for the BFGS method is given in Table 5-4 at the end of this chapter. It employs
the Fibonacci search program described in Chapter 5 for the line searches. This method and the
program are applicable to functions that are not quadratic, also. However, the property of quadratic
termination to the optimum in a predetermined number of steps is applicable to quadratic functions
only; and a stopping criterion has to be specified for general nonlinear functions. In this program

185

the function to be minimized and the stopping criterion, EPS, are to be supplied by the user; and
the program terminates when the magnitude of successive values of the profit function are less
than the value of the stopping criterion. The solution to the problem of Example 6-4 is given to
illustrate the use of the program.

Conjugate Gradient and Direction Methods: The distinguishing feature of these
methods is that they have the quadratic termination property. The conjugate direction methods do
not require derivative measurements, and the conjugate gradient methods only require gradient
measurements. These procedures have been effective on a number of optimization problems, and
they have been summarized by Fletcher (4) and others (6, 7, 8, 9, 15). The conjugate gradient and
direction algorithms can locate the optimum of a quadratic function by searching only once along
conjugate directions if exact line searches are used (quadratic termination), and all methods rely
on the theorem given below. They differ in the way the conjugate directions are generated, and
the objective has been to develop efficient methods for general functions (4). Two methods that
have been consistently better performers than the others will be described, Powell's method for
conjugate directions and gradient partan for conjugate gradients.

The idea for these methods is based on the fact that the optimum of a function that is
separable can be found by optimizing separately each component. A quadratic function can be
converted into a separable function, a sum of perfect squares (15), using a linear transformation;
and the optimum can be found by a single variable search on each of the n transformed independent
variables. The directions from the transformations are called conjugate directions.

A quadratic function to be optimized can have the following form.
y(x)=a+bl x+x" Hx (5-21)

Then using of the properties of a quadratic function, e.g. H is a positive definite, symmetric matrix,
it can be shown that a set of linearly independent vectors si, sz, ..., Sn; are mutually conjugate with
respect to H if:

SiT H S = 0 (5-22)

Then using this property, sets of conjugate search directions can be constructed that minimize the
quadratic function, Equation 5-21, as illustrated by Himmelblau (8). The theorem on which
these methods rely, as given by Fletcher (4), is:

A conjugate direction method terminates for a quadratic function in at most n exact line
searches, and each X;+] is the minimizer in the subspace generated by X; and the directions

S1, 82, ..., Si (that is the set of points {xlx=x1 +El‘ lajsjVaj }).
i

The proof uses the stationary point necessary conditions, Equation 5-22 and the fact that mutually
conjugate vectors are linearly independent (4, 9, 26, 57). However, the proof does not give insight
into the means of constructing conjugate directions (4).

186

The notion of conjugate directions is a generalization of orthogonal directions where H =
I in Equation 5-22 according to Avriel (9); and algorithms, such as Powell's method, initially
search along orthogonal coordinate axes. Also, the DFP and the BFGS methods are conjugate
direction methods when exact line searches are used (7).

Searching along conjugate directions can be represented by the following equation.

X=Xx,+ Eaixi (5-23)

i=1

where o; is the parameter of the line in the conjugate directions (the orthogonal coordinate axes
initially in Powell's method), and x; is the vector that gives the conjugate directions (a coordinate
axise.g. X;= (0, ..., 0, x;, 0, ...0) in Powell's method). For a given direction of search, x;, the value
of a; is located to give the optimum of y(x;) along the line of search. The function to be optimized
can be written as:

Y = y(x,+ Y ax,) (5-24)

Then to locate the optimum, x*, an exact line search is conducted on each of the o,'s individually.
The optimum of y(x) is then determined by exact line searches in each of the conjugate directions.
Further details are given by Fletcher (4), Avriel (9), and Powell (57) about the theory for these
methods.

The two methods most frequently associated with conjugate direction are illustrated in
Figure 5-1. These are Powell's method (57) and steep ascent partan (12). In Powell's method, the
conjugate directions are the orthogonal coordinate axes initially, and in steep ascent partan the
conjugate directions are the gradient lines. Also, both procedures employ an acceleration step. In
the following paragraphs these two methods are discussed in more detail for n independent
variables and are illustrated with an example.

In Powell's algorithm (9) the procedure begins at a starting point Xo, and each application
of the algorithm consists of (n+2) successive exact line searches. The first (n + 1) line searches
are along each of the n coordinate axes. The (n+2)nd line search goes from the best point obtained
from the first line search through the best point obtained at the end of the (n+1) line searches. If
the function is quadratic, this will locate the optimum. If it is not, then the search is continued
with one of the first n direction replaced by the (n + 1)th direction; and the procedure is repeated
until a stopping criterion is met. This is illustrated in Figure 5-1(a) for two independent variables.

The basic procedure for an iteration as given by Powell (57) is as follows for a function of
n independent variables starting at initial point x; with the conjugate direction s1, 2, ..., s, chosen
as the coordinate axes.

Powell's Method for a General Function (57)

187

. Calculate a; so that y(x7 + a7 s,) is @ minimum, and define Xo = x; + a; S,.
1. Forj=1,2, .., n:
Calculate o, so that y(x;.1 + o; §;) is @ minimum.
Define x; = x;.1 + 0; 8;.
Replace s; with s;+1.

2. Replace s, with x, — Xo.
3. Choose a so that y[xo+ a(X, — Xo)] is @ minimum, and replace xo with xo + a(x, — Xo).
4. Repeat steps 1-3 until a stopping criterion is met.

For a quadratic function the method will arrive at the minimum on completing Step 3. For
a general function Steps 1-3 are repeated until a stopping criterion is satisfied. Step 0 is required
to start the method by having xo, the point beginning the iteration steps 1-3, be a minimum point
on the contour tangent line s,. The following example illustrates the above procedure for a
quadratic function with two independent variables.

Example 5-5 (8)

Determine the minimum of the following function using Powell's method starting at initial point
x;=(2,2).

minimize: y = 2x12 + x2% - x1x2
As shown in Figure 5-2, the procedure begins at point x; = (2, 2), and step 0 locates the minimum

on the contour tangent line s,, Xo, by a single variable search along coordinate axis n (= 2) as
follows:

Step 0. n=2 si7=(1,0) $:7=(0,1) x/=(2,2)
Xio 2 0
X0 = X7+ 0 S2 or = T
X5, 2 1

o) =227 + (2 +) - (2)(2 + o)

188

ﬂeleratiw
Line

Seorch

Line
Search
Line

Stort

X2

a) Powell's Method

Acceleration

Grodient

Xy

Stort Contour Tongent

X2

b) Steep Ascent Partan

Figure 5-1 Graphical lllustration of Powell’s Method and Steep Ascent Partan

Using an exact line search, a; = -1 and xo” = (2, 1).

Step 1. si7=(1,0) s27=(0,1) xo' = (2, 1)

. X1 2 1
Jj=1 X1 =Xo+ 07 8; or| 7| = +
Xy, 1 0

You) =22+ a)> +(1)*- (2 + as)(1)

189

Using an exact line search, a1 =-7/4 and x,” = (Y4, 1). Replace s; with s>

~.
Il
\S)

X, 1/4
X2 =X] T 028 or = +a,
X0 1

'

W(02) =2(%)° + (1 + 02)* - (Va)(1 + @2)

Using an exact line search, az = - 7/8 and x>7 = (1/4, 1/8)

~13
Step 2. s> is replaced with x> — xo = {1/4} _ {2} _ { 1 A:I

/8] |1 ~7/8

Step 3. Choose a3 so that y[x> + az(x2 — Xo)] is a minimum. Let

-13
X3 = X2 + 03(X2 — Xo) = |:1/4:| + a|: 1 Ai|

/8 ~-7/8
3(03) = 2(1/4 - 1 3/403)% + (1/8 - 7/8a3)> - (1/4 - 1 3/4a3)(1/8 - 7/8as3)

Using an exact line search, az = 1/7 and x37 = (0, 0). x3 is the minimum of the quadratic function,
and the procedure ends.

If the function in the above example had not been quadratic, the procedure would have
continued using ;7 = (0, 1) and s,” = (-1 3/4, -7/8), i.e. the direction (x2 — X¢) for the second cycle.
In the third cycle, s; would be replaced by s> and s> would be replaced by the new acceleration
direction. The cycles are repeated until a stopping criterion is met.

Powell (57) has pointed out that this procedure required modification if the acceleration
directions become close to being linearly dependent. He reported that this possibility has been
found to be serious if the function depended on more than five variables. Powell developed a test
that determined if the new conjugate direction was to replace one of the existing directions or if
the iterative cycle, steps 1-3, was to be repeated with the existing set of linearly independent
directions. If the reader plans to use this procedure Powell's paper (57) should be examined for
the details of this test which was said to be essential to minimize a function of twenty independent
variables.

Powell’s method has been called one of the more efficient and reliable of the direct search
methods (15). The reason is its relative simplicity and quadratic termination property. The method
uses sectioning and does not employ the acceleration step. It just searches along the coordinate
axes one at a time and can be confounded by resolution ridges.

190

/,f““-\
Re N \
N \
\ \ 1#1(2,2)
2r- \\ \\ Initial Point
- TS \\ \
/’, \\ \\ \\
\ \ |Line
\ \ | Search
\\ \ \
\ \ \
x; (1/74,1) Line Search \ xp(2,1)
Ll \ \ | Starting Point
\ \ | for 1teration
\
\ \ | !
\ \ | I
—— \ Acceleration from |
g \\\ \ } aothroughl X2 II
e L
. ,xa(l/4.|/8) | ’ l
1 ! i 1 1 2
x3(0,0) |
Minimum X
Figure 5-2 lllustration of Powell’s Method for
Y = X2 + 2X,2 — XX, from Example 5-5 after Himmelblau (8)

The conjugate gradient method, gradient partan, has proved to be as effective as Powell's
method. It is an extension of gradient search and has the ability to locate the optimum of a function
with ellipsoidal contours (quadratic termination) in a finite number of steps. The term partan
comes from a class of search techniques that employ parallel tangents (12). These methods move
in conjugate directions; or in the case of gradient partan, they move in the direction of conjugate
gradients. The procedure is diagrammed in Figure 5-1 (b), and this shows that the gradient line is

perpendicular to the contour tangent. Thus, the method can begin directly from the starting point
as described below.

For two variables the procedure employs two gradient searches followed by an acceleration
step, as shown in Figure 5-1 (a), for a function with elliptical contours. The acceleration line

passes through the optimum. The equations for the gradient and acceleration lines for this method
are:

191

Gradient line: Xx+1 =Xk + o V y(xx) (5-25)
Acceleration: Xp+1 = X3 + o (Xk - X4-3) (5-26)

For more than two variables the diagram below shows the sequence of gradient searches
and acceleration steps required for a function with ellipsoidal contours.

Gradient Partan Algorithm for a Function with Ellipsoidal Contours
Number of Independent Variables

2 3 4 n
Start: Xxo
Gradient: X9 — X2

Gradient: x> — X3 X4 — X5 X6 — X7 X242 — Xop-1

Accelerate: X0 — X3 — X4 X2 — X5 — X6 X4 — X7 ™ X8 X2n-4 — Xon-1 — X2n
To have the recursion relation shown above, it is necessary to omit a point numbered x;.

As shown in the above diagram for a function of » independent variables with ellipsoidal
contours, a total of n gradient measurements and (2n-1) exact line searches are required to arrive
at the optimum point x2,. The search begins at xo, and a search along the gradient line locates point
x2. This is followed by another search along the gradient line to arrive at point x3. Then an
acceleration step is performed from point xo through X3 to arrive at point x4, the optimum of a
function with elliptical contours. For n independent variables the procedure continues by repeating
gradient searches and accelerations to arrive at point X2,, the optimum of a function of »
independent variables having ellipsoidal contours. This procedure is illustrated in the following
example for a function with three independent variables. In this case the optimum will be reached
with three gradient measurements and five line searches.

Example 5-6 (10)

Determine the minimum of the following function using gradient partan starting at the point xo =
(29 '23 1)

y=2x12 + x2? + 3x3°
Beginning with a gradient search from point xo to point x>, Equation 5-7 is used.
X =Xo+ a Vy(Xo)
or
x1= 2+8a

192

ay/ox, 4x,
x2=-2-4a where Vy=| dy/ox, |=| 2x,
ay/0x,, 6x,

x3=1+6a
Performing an exact line search along the gradient from x¢ gives:
y =22+ 8a) + (-2 - 4a)* + 3(1 + 6a)?
Setting dy/do. = 0 to locate the minimum of y along the gradient line gives:

dy = 32(2 + 8a) - 8(-2 - 4a) + 36(1 + 60) = 0
da

Solving for the optimum value of o gives o = - 0.2302. Using o to compute x> gives (0.1584,
-1.079, - 0.3810)7, and the gradient line at x; is:

x1=0.1584 + 0.63360
x2=-1.079 - 2.158a
x3=-0.3810 - 2.287a
Performing an exact line search along the gradient gives:
y=2(0.1584 + 0.63360)> + (-1.079 - 2.158a)* + 3(-0.3810 - 2.287a)*

Setting dy/da = 0 and solving gives o = -0.2432. Computing x3 gives (0.0043, -0.5543,
0.1750).

Accelerating from xo through x3 to locate x4 gives:
X = Xo + o(X3 - X0)

or
x1= 2-1.996a
x2=-2+1.446a
x3= 1-0.8250a

Performing a search along the acceleration line gives:

p=2(2-1.9960)* + (-2 + 1.446a)2 + 3(1 - 0.8250c)?
193

Setting dy/do. = 0 and solving gives o = 1.1034. Computing x4 gives (-0.2021, -0.4048,
0.0897)".

The procedure is continued with a gradient search from x4 to Xs and an acceleration step
from x> through xs to X6, the optimum. The following tabulates the results of these calculations

and the previous ones.
parameter of the

gradient or

X1 X2 X3 acceleration line

Start X0 2 -2 1

Gradient -0.2302
X2 0.1584 -1.079 -0.3810

Gradient -0.2432
X3 0.0043 -0.5543 0.1750

Accelerate 1.1034
X4 -0.2021 -0.4048 0.0897

Gradient -0.2822
X5 0.0260 -0.1764 -0.0622

Accelerate 1.1915

Optimum X6 0.0001 0.0000 -0.0001

The parameter of the gradient line is negative, showing that the procedure is moving in the
direction of steep descent. The parameter of the acceleration line is greater than one showing the
new point lies beyond the last point.

This procedure has been used successfully on numerous problems. However, it has been
referred to as a "rich man's optimizer" by Wilde (10). The method tends to oscillate on problems
with sharp curving ridges, and numerical computation of the gradient requires more computer time
and storage than some other methods. The two equations used, the gradient and acceleration lines,
are simple and easy to program; and the method will find better values in each step toward the
optimum.

For those interested in a detailed discussion of conjugate gradient and direction methods,
the books by Fletcher (4), Gill, et al. (6), Avriel (9), Himmelblau (8), Reklaitis et al. (15) and Wilde
and Beightler (12) are recommended. Now, we will examine another class of methods that rely
on logical algorithms to move rapidly from the starting point to one near an optimum.

Logical Methods: These procedures use algorithms based on logical concepts to find a
sequence of improved values of the economic model leading to an optimum. They begin with
local exploration, and then attempt to accelerate in the direction of success. Then if a failure occurs
in that direction, the method repeats local exploration to find another direction of improved values
of the economic model. If this fails, the algorithm's logic may then try other strategies including
a quadratic fit of the economic model (end game) to look for better values. Typically, these

194

procedures do not require derivative measurements, and the algorithm compares the computed
values of the economic model. Thus, they are sometimes called function comparison methods.

Two of the better-known methods are pattern search (12) and the polytope or simplicial
method (6). Both have been used successfully on a number of problems. Pattern search is probably
the more widely used of the two procedures, and it will be discussed in more detail. The polytope
method performs local explorations at the vertices of an n-dimensional generalization of an
equilateral triangle and can employ an acceleration step based on these results. The details of this
method and extensions are given by Gill, et al. (6).

The logical algorithm of pattern search is illustrated in Figure 5-3, and it begins with short
excursions from the starting point to establish a pattern of improved values of the economic model.
Based on these function comparisons, it accelerates in the direction established from the local
explorations. If successful, the acceleration is continued. Then when a failure is encountered, i.e.
a value of the economic model is less than the previous one, the pattern is said to be destroyed;
and local explorations are performed to establish a new pattern of improved values of the economic
model. Again, acceleration is performed in the new direction until a failure is encountered. The
procedure continues in this fashion until an apparent optimum is reached. Then the step size of
the local exploration is reduced, attempting to find another direction of improvement in the
economic model.

If this is successful, the procedure continues until another optimum is found. Reducing the
step size is repeated; and if this is unsuccessful in finding a new direction, the current point is
declared a local optimum. However, a quadratic fit at the point is needed to confirm that it is an
optimum rather than a saddle point.

The algorithm has two parts. One is the local exploration procedure, and the other is the
acceleration step. The local explorations are performed about a base point by perturbing one
variable at a time. Each time a variable is perturbed and a better value of the economic model is
found, this point is used when the next variable is changed rather than returning to the original
point. These are called temporary heads and the first one ti1 is computed by the following
expression.

195

X

Start

b, - Starting Point

t|o = b, Local Exploration

tog = bp + (bp - b)) Acceleration
by - Local Exploration

tzg = bz + (bz - by) Acceleration
by - Local Exploration

ta0 = bg + (b - bz) Acceleration
b5- Local Exploration

ts0 = bg + (bg - byl Acceleration
y(tgo) <ylbg) Pattern Destroyed
b6 - Local Exploration

tgo = bg + (bg - bg) Acceleration
b‘7 - Local Exploration

t;0= by + (bg - bg) Acceleration
b8 - Local Exploration

tgo = bg + (bg - b7) Acceleration
bg- Local Exploration

tgo = bg + (bg ~ bg) Acceleration
y({tgo) < y(bg) Pattern Destroyed
bjo- Local Exploration

‘|O= blo + (b|0 - bg)

b” = to Local Exploration
Reduce Stepsize

Figure 5-3 lllustration of Pattern Search

{b1 + 01 if y(b1 + &1) > y(b)
tii= {b1—0: if y(b1 — 81) > y(b) (5-27)
{bi if y(b) > max [y(b1 + 81), y(b1 — 81)]

where b, is the starting point, 87 = (31, 0, ... 0), and the first subscript on t;; refers to the pattern
number and the second subscript refers to the coordinate axis of the variable being perturbed. For
coordinate axis x> the perturbations are conducted around point t;1 to locate point ti2, and equation
corresponding to Equation 6-27 above for the coordinate axis X; is:

196

{tiy—1+ 81 if y(tr,— 1+ 81) > y(t1,-1)
ti= {tij-1—01 ifp(ti,j—1—01) > y(ti,j—1) (5-28)
{ti,j—1 if y(ti,;—1) > max [y(ti,;- 1+ 61), y(ti,— 1=~ 61)]

When these perturbations and evaluations are performed for each of the coordinate axes, a
final point t;, is located. This point is designated b, and an acceleration move is made in the
direction established by the local exploration. This is given by the following equation and locates
point tao.

t2o=b1+2(b2-bi1)=b2+ (b2 -bi) (5-29)

Now, point ty is used as the starting point for local exploration following the same
procedure using Equations 5-27 and 5-28 to locate point bs. Then the acceleration step is repeated
using the same form of Equation 6-27 to locate t3o.

t30 = by + 2(b3 - b2) = b + (b3- b2) (5-30)
The search grows with repeated success.

At this point the two parts of the algorithm have been described in a general form. The
local exploration step and the acceleration step can be readily implemented in a computer program,
and one is given by Kuester and Mize (16). In addition, the following example illustrates the
method on the contour diagram of a function of two independent variables shown in Figure 5-3.
It shows the local exploration, acceleration, pattern destroyed and reestablished, and location of
the optimum.

Example 5-7

Locate the maximum of the function shown in Figure 5-3 using pattern search starting at the points
indicated as b;.

To begin, local explorations are performed by moving in the positive coordinate axis direction first
(open circles indicate failures; and solid circle indicate successes). On the x; axis the largest of
y(x1, x2) is at t11. Then perturbing on the x> axis locates the largest value of y at ti» = b,. Effort is
not wasted by evaluating y in the negative direction on the x> axis.

Next, an acceleration step is performed using Equation 5-27 to locate point ty. Then local
exploration determines point b3, and acceleration step using Equation 5-28 locates point t3o. Local
exploration locates point b4, and the acceleration step increases and changes directions as a result
of the outcomes from the local exploration at t3o to reach point t4. Local exploration determines
point bs, and acceleration gives point tso. However, y(tso) < y(bs); and the pattern is said to be
destroyed.

Local exploration is repeated, and bg is located. This sequence of local explorations is repeated
determining points: teo, b7, t7o, bs, tso, bo, and top. However, y(too) < y(bo) and the pattern is

197

destroyed. Local exploration is repeated to locate bio, and acceleration is to tioo. However, local
exploration around tio0 shows that this point has the largest value of y and tio0 = b11. Then the
procedure would reduce the step-size to attempt to find a direction of improvement.

Although this is not shown in Figure 5-3, the outcome would be that y(b1) is still the largest value.
Point b1 would be declared a local maximum, and a quadratic fit to the function could be
performed to confirm the maximum. The pattern search steps are summarized on Figure 5-3.

Pattern search has been used successfully on a number of types of problems, and it has
been found to be most effective on problems with a relatively small number of independent
variables e.g. ten or fewer. It has the advantage of adjusting to the terrain of a function and will
follow a curving ridge. However, it can be confounded by resolution ridges (12), and a quadratic
fit is appropriate to avoid this weakness.

There are a number of other methods based on logical algorithms. These are discussed in
some detail in the texts by Himmelblau (8), Gill, Murray and Wright (6), and Reklaitis et al. (15).
However, none of those methods are superior to the ones discussed here. Now, we will turn our
attention to methods used for constrained multivariable search problems and see that the DFP and
BFGS procedures are an integral part of some of these methods.

Constrained Multivariable Search Methods

There are essentially six types of procedures to solve constrained nonlinear optimization
problems. The three considered most successful are successive linear programming, successive
quadratic programming and the generalized reduced-gradient method. The other three have not
proved as useful, especially on problems with a large number of variables (more than 20). These
are penalty and barrier function methods, augmented Lagrange functions and the methods of
feasible directions (or projections) that are sometimes called methods of restricted movement. Of
these methods only successive linear programming does not require an unconstrained single or
multivariable search algorithm. Also, penalty and augmented function methods have been used
with successive quadratic programming. Each of these methods will be discussed in the order that
they were mentioned. This will be followed by a review of studies that have evaluated the
performance of the various methods.

Successive Linear Programming: This procedure was called the method of approximate
programming (MAP) by Griffith and Stewart (18) of Shell Oil Company who originally proposed
and tested the procedure on petroleum refinery optimization. As the name implies, the method
uses linear programming as a search technique. A starting point is selected, and the nonlinear
economic model and constraints are linearized about this point to give a linear problem that can
be solved by the Simplex Method or its extensions. The point from the linear programming
solution can be used as a new point to linearize the nonlinear problem, and this can be continued
until a stopping criterion is met. As shown by Reklaitis et al. (15), this procedure works without
safeguards for functions that are mildly nonlinear. However, it is necessary to bound the steps
taken in the iterations to ensure that: the economic model improves, the values of the independent
variables remain in the feasible region and the procedure converges to the optimum. These

198

safeguards are bounds on the independent variables specified in advance of solving the linear
programming problem. The net result is that the bounds are additional constraint equations. If the
bounds are set too small, the procedure will move slowly toward the optimum. If they are set too
large, infeasible solutions will be generated. Consequently, logic is incorporated into computer
programs to expand the bounds when they hamper rapid progress and shrink them so that the
procedure may converge to a stationary point solution (1).

For successive linear programming, the general nonlinear optimization problem can be
written as:

optimize: »(x) (5-31)
subject to: fi(x) < b; fori=1,2,..,m
uj > x> forj=1,2,.,n

where upper and lower limits are shown specifically on the independent variables.

Now the economic model y(x) and the constraints fj(x) can be linearized around a feasible
point x; to give:

optimize: Echxj =y-y(x;)
j=1

subject to: Eaiijj <b, —fi(xj) for i=1,2,....m
j=1

ui—xjszszlj—xjk for j=12,...,n (5-32)

AX,=X,-X, ¢ = ay(x;) a, = af; (x,)
0x; 0x;
J J
The problem is in a linear programming format in the form of Equation 5-32. However,
the values of Ax; can take on either positive or negative values depending on the location of the
optimum. Negative values for Ax; are not acceptable with the Simplex Algorithm so a change of

variables was made by Griffith and Stewart (18) as follows.

Axj=Axi" — Ax;~ (5-33)

Ax; ifAx;=0
+ J J
ij={

0 ifAx; <0

where i
A o -Ax; .thxjso
! 0 ifAx; >0

199

Substituting Equation 5-33 into Equation 5-32, now the linear programming problem has the
form:

optimize: Echx; - ECJ-AX; =y-y(x)

j=1 j=1

subject to: Eaiij;. - Eaiij;. <b - fi(x;) fori=12,..m (5-34)
Jj=l Jj=l

Ax;.—Ax;.s(ui—xjk) for j=1,2,...,n
—-Ax;+Ax; < (x;-1;)
The bounds on the upper and lower limits on the variables are specified by (u; - xjx) and (xj«

- ;) in Equation 5-34. The inequality Ax;" - Ax; > (1; - xjk) is written as shown above to have a
positive right hand side of these constraint equations as required by the Simplex Method.

The value of the next point for linearizing is given by xjx+1 = xjx + Ax;* - Ax;. The procedure
is started by specifying a starting point xo(k=0).

The above equations are now a linear programming problem where the independent
variables are Ax;” and Ax;. The value of the bound u; and /; may affect the rate of convergence of

the algorithm. The use of bounds is illustrated in the following example given by Griffith and
Stewart (18).

Example 5-8 (18)
Locate the maximum of the following constrained nonlinear optimization problem by the method
of successive linear programming starting at Xo (1, 1), and using the bounds (u; - xjx) = (xjx - ;) =
1.
maximize: y=2x1+tx2
subject to: x12+x22<25
x12-x? < 7

The two constraint equations are shown in Figure 5-4 where they intersect at the maximum of the
economic model, point x*(4, 3).

200

4 FEASIBLE REGION
xl2 - x22 =7
2
x3.(4.o, 31/6)
3 ° x4 (4.0, 3.0044)
X5 (3,3) x5(4.0 , 3.0009)
o
x
2+ ®
XI (2 ,2)
- []
xol 1 1)
Starting Point
1 1
Y | 2 3 4 5

Figure 5-4 Diagram Showing the Successive Linear Programming Solution
of Example 5-8 after Griffith and Stewart (18)

For this problem the successive linear programming approximation is obtained using Equation 5-
34.
maximize: 2Ax1" + Ax2" — 2Ax1" — Ax2 =y — (2x1k+ x2k)

subject to:
2x16 Ax1” + 22k Ax2" —2xueAx1 = 2x0% Axy <25 — [x1% + x247]
2x1k Ax1* — 20k Ax2T = 2xuAxi +2xu Axa < T — [l — x2i7]
Axi* - Axr <1
Axy* - Axy <1
—-Ax1t + Axr <1
—-Axa*t + Axy <1
There are four variables in the above equations Axi", Axi”, Ax2", and Axy".
Starting at point Xo (1, 1) the above equations become:
maximize: 2Ax;" + Axy* —2Axr — Axy =y-3
subject to: 2Ax;" +2Ax," — 2Ax1 —2Ax> <23
2Ax1" —2Ax;" —2Ax1” + 2Axy" <7

201

Axi* - Axr <1

Axy" - Axy <1
—Ax1" + Axr” <1
—Axy" + Axy <1

Solving by the Simplex Method gives:

AxiT =1 Ax17 =0 A" =1 Axy =0
x; is the computed as follows:
x,1=x,0t A" —Axr=1+1-0=2
x2,1=x20t A" —Axx=1+1-0=2
and
x1(2,2) M(x1) =06
Linearizing around x» (2, 2) gives:
Maximize: 2Ax;" + Axr* —2Axr — Axy =y—06
Subject to: 4Ax;* + 4Ax," —4Ax1 —4Axy <17
4Ax1" —4Ax>" —4Axr + 4Axy <7
Axi* - Axr <1
Axy" - Axy <1
—Ax1” + Axy <1
—Ax>" + Axy <1
Solving by the Simplex Method gives:
AxiT =1 Ax17 =0 A" =1 Axy =0

x2 is the computed as follows:
x2=x,1tA A =2+1-0=3
x2,2=x12F A" — Ay =2+1-0=3

and x2(3, 3) y(x2)=9

202

Note that in Figure 5-4, the movement is controlled by the step size to this point.

Linearizing around x» (3, 3) gives:

maximize: 2Ax;" + Axy* —2Ax1 — Axy” =y—9
subject to: 6Ax1" + 6Ax2" — 6Ax1 — 6Axy <7
6Ax1+ — 6Ax2" — 6Ax1” + 6Axy” <7
Axi* - Axr <1
Ax>" - Axy <1
—Axi" + Axr <1
—Axs* + Axy <1

Solving by the Simplex Method gives:

AxiT=1 Ax17 =0 Axxt=1/6 Axy

I
S

x3 is the computed as follows:
x,3=x12t A" —Axr=3+1-0=4

xX23=x22+t A" —Axx=3+1/6-0=31/6
and
x3(4, 3 1/6) y(x3)=111/6

Note that in Figure 5-4, the movement is controlled by one of the constraint equations.

Point x3 is slightly infeasible by 1/6 on the x> axis. Deciding to continue the search at this infeasible
point is called following an infeasible path strategy. The other option is to return to point x; and
reduce the step size by one-half, for example. The right hand side of the last four constraint
equations would be changed from 1.0 to 0.5. If the optimization program uses the infeasible path
strategy, then checks are built-in to prevent increasing infeasible points.

Linearizing around x3 (4, 3 1/6) gives:

maximize: 2Ax;" + Axy" = 2Axr — Axy =y—111/6
subject to: 8Ax;" + (19/3)Ax2" — 8Axr = (19/3)Axy <-37/36
8Ax1" —(19/3)Ax2" — 8Axr + (19/3)Axy < 37/36
Ax* - Axr” <1
Axy" - Axy <1
—Ax;* + Axr” <1
- Axy* + Axy <1

203

Solving by the Simplex Method gives:
Ax1"=0.0 Axi7 =00 Ax"=0.0 Ax2 =0.1623
x4 is the computed as follows:
X14=x1,31tAx1"—Ax1 =4.0+0.0-0.0=4.00
X24=x23+T A" —Ax2=31/6 + 0.0 — 0.1623 = 3.0044
and
x4 (4.0, 3.0044) y(x4)=11.00

Note point x4 is less infeasible than point x3.

Linearizing around x4(4.0, 3.0044) gives:

Maximize: 2Ax;" + Axp* — 2Ax1 - Axy
Subject to: 8.0Ax1" + 6.0088Ax>" — 8.0Ax1” — 6.0088Ax>
8.0Ax;" —6.0088Ax2" — 8.0Ax + 6.0088Ax>

Ax1” - Axr
Ax>" - Axy

—Axi* + Axr
- Axy" + Axy

Solving by the Simplex Method gives:

Ax1"=0.0 Axi7 =00 Ax"=0.0 Ax>"=0.00438
x5 is the computed as follows:
xi,5=x1,4+t A" —Ax17=4.0+0.0-0.0=4.00

X2,5=x2,4+ Ax2" — Axa” = 3.0044 + 0.0 — 0..00438 = 3.0000

and
x5(4.0, 3.0000) y(x5) =11.00

This is the optimal solution and is the same as given by Griffith and Stewart (18).

It should be noted that point x3 (4, 3 1/6) is an infeasible point and does not satisfy the first
constraint equation. However, this point is sufficiently close to the optimum that the method
converges to the optimum after linearizing around this point. Convergence to the optimum will

not take place if bounds are not used, however.

This problem was solved without the constraints bounding the variables, i.e. omitting the
last four constraint equations. Starting at point xo(1, 1) the point xi(8.5, 5.0) was found.
Linearizing around x; (8.5, 5.0) and solving by the Simplex Method gave the point x2(0,12.23).

204

y—11.011

—0.0264
0.0264

VAN VAN VAN VAN VAN VAN
—

Then linearizing around x»(0, 12.23) gave a set of constraint equations that had an unbounded
solution. Consequently, bounds were required on this problem to ensure convergence to a solution.

Computer programs can reduce the bounds when an infeasible solution is located and
resolve the problem. This was done for the problem starting at point x»(3, 3) since point x3(4, 3
1/6) was infeasible, and the bounds were reduced by one-half each time an infeasible point was
obtained. Following this procedure, the next two iterations for this problem were (3.563, 3.492)
and (3.595, 3.475). Further examination showed the method had difficulty following the first
constraint to the optimum. As Himmelblau (8) points out, when constraints become active then
successive linear programming's "progress becomes quite slow." Consequently, logic is
incorporated in some programs to allow the procedure to continue from an infeasible point, as was
done by Griffith and Stewart in this example.

For those interested in having a successive linear programming code, Lasdon (19) reports
that the most widely used and best known one, POP (Process Optimization Procedure) is available
from the SHARE library (COSMIC, Bartow Hall, University of Georgia; Athens GA 30601).
Other listings of sources of optimization codes are given by Sandgren (20) and Lasdon and Waren
(22).

Large linear programming codes have been used with large simulation models in an
iterative fashion to approximate the nonlinearities in these models. This approach of using linear
programming successively has been successful in large plants. In most cases, this procedure has
been used by companies that have many man-years of effort in the development and use of a large
linear programming code for plant optimization and a corresponding amount of effort in large
simulations of key process units for prediction of performance and yields. An example of this is
in petroleum refining where linear programming is used for refinery optimization. In addition,
elaborate simulations and correlations have been developed for processes such as catalytic
cracking, reforming and distillation.

As discussed in Chapter 3, the results of a linear programming optimization are as accurate
as the parameters in the economic model and constraint equations, ¢, A and b. As shown in Figure
5-5 iterative procedures have been developed that use these programs together. The large
simulation codes are used to compute the parameters used in the large linear programming code.
Then the linear programming code is used to generate an optimal solution in terms of the
independent variables, x, which are the process variables required by the simulation codes. This
iteration procedure is continued until a stopping criterion is met. Both the linear programming
code and the process simulators are very large programs, and no attempt is made to have them run
at the same time. Typically, the output from the simulators is edited by a separate program to
produce a data set in the form required by the linear programming code. Also, another program
can be used to manipulate the output from the linear programming code into a data set for use by
the simulation programs. Further descriptions of these procedures are given by Pollack and Lieder
(31) for petroleum refinery optimization and by O'Neil, et al. (32) for the allocation of natural gas
in large pipeline networks.

205

N y

X
Linear Programming Process
Code Simulators
]
A =
b
Figure 5-5 Diagram Showing the Use of Process Simulators with Linear Programming

Successive Quadratic Programming: Like successive linear programming, a quadratic
programming problem is formed from the nonlinear programming problem, and it is solved
iteratively until an optimum is reached. However, the iterative procedure differs from that of
successive linear programming. As described by Lasdon and Waren (22), the quadratic
programming solution is not accepted immediately as the next point to continue the search, but a
single variable search is performed between the old and new points to have a better and feasible
point.

In quadratic programming the economic model is a quadratic function, and the constraints
are all linear equations. To solve this problem the Lagrange function is formed, and the Kuhn-
Tucker conditions are applied to the Lagrange function (23, 24, 25) to obtain a set of linear
equations. This set of linear equations can then be solved by the Simplex Method for the optimum.
It turns out that artificial variables are required for part of the constraints and the slack variables
can be used for the other constraints to have an initially feasible basis. Also, finding an initial
basic feasible solution may be the only feasible solution (25), so the linear programming

206

computational effort is minimal. At this point it is important to understand the solution of a
quadratic programming problem, and this procedure will be described next and illustrated with an
example. Then the successive quadratic programming algorithm will be described and illustrated
with an example. Also, modifications of the procedure will be discussed that reduce the
computational effort in numerically evaluating the Hessian matrix that must be obtained from the
nonlinear programming problem.

Theoretically, using a quadratic function to approximate the nonlinear economic model of
the process can be considered superior to a linear function to represent the economic model. This
is part of the motivation for using quadratic programming that can be represented by the following
equations:

maximize: Ecx —/Eijkx X

J=1 k=1

subject to: Eaijxj <b fori=12,..m (5-35)

j=1

x; =0 for j=1,2,...,n

where gjx = qi7 would be the second partial derivatives with respect to x; and x; of the nonlinear
economic model. They would be computed numerically or analytically from the nonlinear
problem given by Equation 5-31. Also, ¢; and a;; would be computed as shown by Equation 5-32
either numerically or analytically from the nonlinear problem, Equation 5-31.

The quadratic programming procedure begins by adding slack variables x,+; to the linear
constraint equations. It will not be necessary to use x,+2, since the problem will be solved by linear
programming, and all of the variables must be positive or zero. The Lagrange function is formed
as follows:

L(x,)t)=icjxj Aiiqﬂx,xk

Jj=1 Jj=1 k=1
-Y 4, (Eaijxj +X,, - b;) (5-36)
i=1 Jj=1

n
=Y ey (=5 + X))
Jj=l

In the second term of Equation 5-36, positive Lagrange multipliers are required, so a negative sign
is used on this term with the constraint equations. (See Equation 2-49.) The third term is included

207

to ensure the variables are positive or zero, i.e. Xj > 0 or - x; <0 which is written as an equality —
Xj + Xsj = 0 with slack variables, Xs;.

Setting the first partial derivatives of the Lagrange function with respect to x; and 4; equal
to zero give the following set of (n + m) linear algebraic equations:

%= j—ijkxk—zaij/li+/lm+j=0 for j=12,....n (5-37)
j k=1 i=1
ax.+x .—-b =0 for i=12,....m (5-38)
gy n+i i

j=I

Considering 4x +; as a slack variable, Equation 5-37 can be written as:

¢;= ¥ 4%, - Y, a;%; <0 for j=12,.n (5-39)

k=1 i=1

The inequality form of the Kuhn - Tucker conditions, Equation 5-38, is used to account for x; >
0. (See Hillier and Lieberman (25), and Hadley (59)).

Eaijxj+xn+i=bi for i=1,2,...,m (5-40)

j=1

Also, the complementary slackness conditions must be satisfied, i.e. product of the slack
variables x,+; and the Lagrange multipliers 4; are zero.

Ax,, =0 for i=12,....m (5-41)
If x,+; = 0, then the constraint is active, an equality; and 4; # 0. However, if x,+; # 0, then the

constraint is inactive, an inequality; and 4; = 0. For more details refer to the discussion in Chapter
2.

The set of Equations 5-39 and 5-40 can be converted to constraint equations for a linear
programming problem in the following way. Surplus variables are added to Equation 5-39 as s;,
and slack variables are added to Equation 6-40 as x,+.. The slack variables x,+; can serve as the
variables for an initially feasible basis for Equations 5-40. However, artificial variables are
required to have an initially feasible basis for Equation 5-39. Adding artificial variables z; with a
coefficient ¢; to Equations 5-39 is a convenient way to start with an initially feasible basis with z;
= 1. Also, the objective function will be to minimize the sum of the artificial variables, zj, to ensure
that they will not be in the final optimal solution. As a result of these modifications, Equations 5-
39 and 5-40 become the constraints in the following linear programming problem:

208

n
minimize: Ez i
j=1

subject to: qukxk +Eaij.)ti -s;+¢;z;=c¢; for j=12,..n (5-42)
k=1

i=1

n
Eaijxj +x,,=b fori=12,...m

Jj=1

This is now a linear programming problem which can be solved for optimal values of x
and A, the solution of the quadratic programming problem. In addition, the solution must satisfy
x>0, A >0 and 4 x,+i = 0. Consequently, the Simplex Algorithm has to be modified to avoid
having both 4; and x,+; be basic variables, i.e. nonzero, to satisfy the complimentary slackness
conditions (26). This may require choosing the second, best variable to enter the basis in
proceeding with the Simplex Algorithm if either 4; or x,+; are in the basis and the other one is to
enter.

Franklin (23) has given uniqueness and existence theorems that prove the above procedure
is the solution to the quadratic programming problem and is a recommended reference for those
details. At this point the method is illustrated with an example.

Example 5-9 (25)

Using quadratic programming determine the maximum of the following function subject to the
constraint given.

maximize: 5x1 + x2 - 1/2(2x1% - 2x1x2 - 2x2x1 + 2x2%)
subject to: x1 +x2 <2

The quadratic programming problem is constructed using Equation 5-42 with c1 =5, c2=1, g1 =
2, qi2 = -2, q21 = -2, q22 = 2, ailr = 1, an=1 and bl =2.

The linear programming problem from Equation 5-42 is:

minimize: z1+ 22
subject to: 2x1-2x2+ A1 -51+ 521 =5
2x1+ 20t -2+ 2 =1
x1+ x2+Xx3 =2

Eliminating z; and z> from the objective function gives the following set of equations for the
application of the Simplex Method.
209

13/5x1—13/5x2 —11/501+ 1/5s1+ 52 =C-2 c=2

2x1 — 2x2 + Al— s1 + 521 =5 z1 =
-2x1 + 2x2 + Al — 5 + 2z =1 =1
X1+ X2+ X3 =2 x3=2

x2 enters the basis, z» leaves the basis

Ox1 - 2/541 +1/5s1+1/5s2 + 4/3z2=C-11/5 C=11/5
241 — s1— s2+5z1 + 22=6 z1 =6/5

-x1+x2 + 28 —Yasmt+ Yoza=1/2 x=Y%

2x1 +x3- Yok + Y28 - Ymn=1% x3=1%

A1 would enter the basis, and the second constraint equation would be used for algebraic
manipulations to ensure a positive right-hand side of the constraint equations according to the
Simplex Algorithm. However, this would have both 4; and x3 in the basis (nonzero); and the
complementary slackness conditions, 41x3 = 0, would not be satisfied. Consequently, another
variable must be selected to enter the basis. This is usually the one with the next small coefficient
and for this problem is x1. Select x1 to enter the basis, and x3 leaves the basis.

—2/5M1+1/5s1+1/552 +4/5=C-11/5| C=11/5

2 A - S1 — s>+ 5z + z2=6 z1 = 6/5
x2+ Yaxs +V A Vi s + Viz=1% x2=1%
X1 + Yaxs—V4 A + Vi s — 1/4z=% xX1=%

A1 enters the basis, z; leaves the basis.

z1 + z2=C-0 C=0

M= 13s1 — 1352+ 53z1+1/322=3 AM=3
X2 +tx3 +1/12 81+ 1/12 52— 5/1221 = 1/6 2 = 1/2 x2=1/2
X1 + X3 —1/12s1 = 1/12 852+ 5/12 21 = 1/6 2o = 3/2 x1=3/2

The minimum has been reached. All of the coefficients of the variables in the objective function
are positive. Therefore, the optimal solution to this quadratic programming problem is:

x1=3/2 x2=Y% =3 x3=0

The positive Lagrange multiplier is consistent with the Kuhn-Tucker conditions for a maximum,
Equation 2-48, since a negative sign was used in Equation 5-36.

210

Successive quadratic programming iteratively solves a nonlinear programming problem by
using a quadratic approximation to the economic model and a linear approximation to the
constraint equations. As the series of quadratic programming problems are solved, these
intermediate solutions generate a sequence of points that must remain in the feasible region or
sufficiently close to this region to converge to the optimum. The logic used with this method is to
search along the line between the new and previous point to maintain a feasible or near feasible
solution. Also, the computational effort in evaluating the Hessian matrix is significant, and quasi-
Newton approximations have been used to reduce this effort. The following example illustrates
successive quadratic programming for a simple problem. The discussion that follows describes
modifications to the computational procedure to improve the efficiency of the method.

Example 5-10
Solve the following problem by successive quadratic programming starting at point Xo (0,0).
minimize: (x1 - 1)> + (x2 - 2)?
subject to: 0.104x1? - 0.75x; +x2 < 0.85
x1+tx2<4.0
The contours of the economic model and the constraint equations are shown in Figure 5-6.
The nonlinear constraint equation is linearized about the point Xk, and it has the following form.
(0.208x1/ - 0.75)x1 + x2 < 0.85 + 0.104x 1>
Placing the problem in the form of Equation 5-35, gives:
maximize: 2x; + 2x2 - 1/2 (2x12 + 2x2%) - 5
subject to: (0.208x1x - 0.75)x1 + x2 < 0.85 + 0.104x
x1t+x<4
The quadratic programming problem is constructed using Equation 5-42 with c1 =2, c2 =4, q11 =

2,q12=¢g21=0,¢g22=2, a1 = (0.208x1x — 0.75), aiz=1,a21 =1, a2 =1, b1 = 0.85 + 0.104x14, b>
=4

211

Minimize: (x,-NZ + (xp-2)2
Subject to: 0.104 x2 - 0,75 x, +x,<085
x| + x4

34
3.2
30
2.8
26

24

Unconstrained 2_ =
2.2 Minimum 0.104x; -0.75x%) +x, =0.85

2.0 °
xp(1.192, 1.74)
1.8 o s

X2

16 x"(1.2, 1,6) Constrained
14 Minimum

1.2
1.0
0.8
0.6
04 /
02f. 7/

1 ! 1 1 1] I 1 1 1 I !
O 02040608 10 12 14 16 18 20 2.2 2.4 26 28

X

Figure 5-6 Diagram of Solution of the Multivariable Optimization Problem
in Example 5-10 by Successive Quadratic Programming

minimize: zi + z»

subject to: 2x1 + (0.208x1x — 0.75)A1 + 12 — 51 + 2z =2
2x1 + M+ -5 + 4z =4

(0.208x1%— 0.75) x1 + x2 + x3 = 0.85 + 0.104x14
X1+ x2 + x4 =4

Solving the above linear programming problem by the Simplex Method with xo = (0, 0) and
ensuring that the complementary slackness conditions are met gives the following result for xo*.

x1=1.192 x2=1.740 A1=10.512

212

This point is shown on Figure 5-6, and it is outside the feasible region. Consequently, a search
along the line between the starting point xo (0,0) and xo" (1.192, 1.740) locates feasible point
x1(1.039, 1.517) on the first constraint.

The quadratic programming problem is formulated around point x; and is solved as was
done above. The resultis x;" (1.209, 1.608) with A; = 0.784 which is infeasible but “close enough”
to continue with this point becoming x> on an “infeasible path.”

x1=1.209 x2= 1.608 1,=0.784

Repeating the procedure by solving the quadratic programming problem at x» gives the
value of x> (1.199, 1.600) with A; = 0.800. This point is feasible and is called x3.

x1=1.199 x2=1.600 A1 =10.800.

This point is sufficiently close to the optimum of the problem x* (1.2, 1.6) for the purposes of
this illustration to say that a converged solution has been obtained.

The Wilson-Han-Powell method is an enhancement to successive quadratic programming
where the Hessian matrix, [g;] of Equation 5-35, is replaced by a quasi-Newton update formula
such as the BFGS algorithm, Equation 5-20. Consequently, only first partial derivative information
is required, and this is obtained from finite difference approximations of the Lagrange function,
Equation 5-36. Also, an exact penalty function is used with the line search to adjust the step from
one feasible point to the next feasible point. The theoretical basis for this algorithm is that it has a
superlinear convergence rate if an exact penalty function is used with the DFP or BFGS update for
the Hessian matrix of the Lagrange function, and global convergence is obtained to a Kuhn-Tucker
point when minimizing an economic model that is bounded below and has convex functions for
constraint equations. The details and proofs are given by Han (51,52).

The problem in Example 5-10 was solved with the Wilson-Han- Powell algorithm. The
identity matrix was used for the Hessian matrix at the starting point xo (0, 0). The subsequent steps
in the solution were x; (1.3803, 1.6871), x> (1.203, 1.6038), and x5 (1.1988, 1.603), which was
sufficiently close to the optimum to stop. Generally, less computational effort is required with the
Wilson-Han-Powell algorithm since second order partial derivatives do not have to be evaluated.

The Exxon quadratic programming code (1) uses the Wilson-Han-Powell algorithm
described above, and they have added refinements to minimize the computational effort in
evaluating the second partial derivatives of the Hessian matrix. This typical large quadratic
programming code is described as having the following steps of basic logic. An initial starting
point is selected, and the linearized constraints are constructed numerically. Then the matrix of
second partial derivatives, the Hessian matrix, is evaluated either numerically or a DFP (Davidon,
Fletcher, Powell) approximation can be used. The quadratic programming problem is solved
generating a new optimal point. Using this new point and the old point, a single variable search is
conducted for an improved, feasible solution to the nonlinear problem. This is followed by
changes in step and function values, feasibility checks and termination tests using the Kuhn-Tucker

213

conditions. Some options included in the program include using analytical derivatives when
furnished, inputting the Hessian matrix by the user or having it be a specified multiple of the
identity matrix with up-dating by the DFP algorithm, and having the user specify whether or not
intermediate solutions are required to be feasible.

In closing this section, it should be mentioned that the Wilson- Han-Powell (WHP) method
has been used successfully on computer-aided process design problems, as described by
Jirapongphan, et al. (42), Vanderplaats (24) and Biegler and Cuthrell (53). In some applications,
the constraint equations were not converged for each step taken by the optimization algorithm, but
an infeasible trajectory was followed where the constraints were not satisfied until the optimum
was reached. In the line search to adjust the step from one point to the next, an exact penalty
function was used. A step length parameter was employed with the penalty function to force
convergence from poor starting conditions. The size of the quadratic programming problem was
reduced by substituting the linearized equality constraint equations into the quadratic economic
model leaving only the inequalities as constraints. The result can be a significant reduction in the
number of the independent variables for highly constrained problems.

The successive quadratic programming method has been shown to be one of the three better
procedures. Now, the equally successful procedure called the generalized reduced gradient
method, 1s described.

Generalized Reduced Gradient Method: This procedure is one of a class of techniques
called reduced-gradient or gradient projection methods that are based on extending methods for
linear constraints to apply to nonlinear constraints (6). They adjust the variables, so the active
constraints continue to be satisfied as the procedure moves from one point to another. The ideas
for these algorithms were devised by Wilde and Beightler (12) using the name of constrained
derivatives, by Wolfe (29) using the name of the reduced-gradient method and extension by
Abadie and Carpenter (30) using the name generalized reduced gradient. According to Avriel (9)
if the economic model and constraints are linear this procedure is the Simplex Method of linear
programming, and if no constraints are present it is gradient search.

The development of the procedure begins with the nonlinear optimization problem written
with equality constraints. The necessary slack and surplus variables have been added as x; or x;?
to any inequality constraints, and the problem is:

optimize: (x) (5-43)
subject to: filx)=0 fori=1,2,..,m
Again, there are m constraint equations and n independent variables with n > m. Also, although
not specifically written above, the variables can have upper and lower limits; and the procedure as

described here will ensure that all variables are positive or zero.

The idea of generalized reduced gradient is to convert the constrained problem into an
unconstrained one by using direct substitution. If direct substitution were possible it would reduce

214

the number of independent variables to (n — m) and eliminate the constraint equations. However,
with nonlinear constraint equations, it is not feasible to solve the m constraint equations for m of
the independent variables in terms of the remaining (» — m) variables and then to substitute to these
equations into the economic model. Therefore, the procedures of constrained variation and
Lagrange multipliers in the classical theory of maxima and minima are required. There, the
economic model and constraint equations were expanded in a Taylor series, and only the first order
terms were retained. Then with these linear equations, the constraint equations could be used to
reduce the number of independent variables. This led to the Jacobian determinants of the method
of constrained variation and the definition of the Lagrange multiplier being a ratio of partial
derivatives as was shown in Chapter 2.

The development of the generalized reduced gradient method follows that of constrained
variation. The case of two independent variables and one constraint equation will be used to
demonstrate the concept, and then the general case will be described. Consider the following
problem:

optimize: y(x1, x2) (5-44)
subjectto: flx1,x2)=0

Expanding the above in a Taylor series about a feasible point Xk (x1x, x2x) gives:

y0) = 306 + 2) 2,)
: ? (5-45 aand b)
0=f(x)+ aj;(.:k) (x,—x,)+ afi::k) (X, —Xy;,)

Substituting Equation 5-44b into Equation 5-44a to eliminate x> gives, after some rearrangement:

$0) =y) (af(xk)) f(xk)+(af(xk)) ay(x,) of (x,) _ dy(x,) of (x,)

ox, ox, ox, ox,

(x, = x,,)
ox, ox, ox, b

(5-46)

In Equation 5-46 the first two terms on the right-hand side are known constants being
evaluated at point xx. The coefficient of (x1 - x1x) of the third term is a known constant, and this
term gives the x; direction to move toward the optimum as in steep ascent. To compute the
stationary point for this equation, dy/dx = 0; and the result is the same as for constrained variation,
Equation 2-18. The term in the brackets of Equation 5-45 is solved together with the constraint
equation for the stationary point. However, the term in the bracket also can be viewed as giving
the direction to move away from x; to obtain improved values of the economic model and satisfy
the constraint equation.

215

The generalized reduced gradient method uses the same approach as described above for
two independent variables, which is to find an improved direction for the economic model and
also to satisfy the constraint equations. This leads to an expression for the reduced gradient from
Equation 6-43. To develop this method, the independent variables are separated into basic and
nonbasic ones. There are m basic variables x5, and (# — m) nonbasic variables X,.

fi(x)=f(x,,x,)=0 fori=12,...,m (5-47)

In theory the m constraint equations could be solved for the m basic variables in terms of the (n —
m) nonbasic variables. Indicating the solution of x; in terms of x,,» from Equation 5-47 gives:

x,=f(x,) fori=12,..m (5-48)

The names basic and nonbasic variables are from linear programming. In linear
programming the basic variables are all positive, and the nonbasic variables are all zero. However,
in nonlinear programming, the nonbasic variables are used to compute the values of the basic
variables and are manipulated to obtain the optimum of the economic model.

The economic model can be thought of as a function of the nonbasic variables only that is
if the constraint equations, Equation 5-48, are used to eliminate the basic variables i.e.

Y0 = y(x,%,) = 3| ()%, | = Y (%) (5-49)

Expanding Equation 5-49 in a Taylor series about x; and including only the first order terms
gives:

an(xk) I E y(xk) , E aY(xk) (5-50)

J=m+l J=m+l

In matrix notation Equation 5-50 can be written as:

V'Y(x)dx, =V"y,(x)dx,+V'y (x,)dx,, (5-51)

This equation is comparable to Equation 5-45a.
A Taylor series expansion of the constraint equations, Equation 5-47, gives Equation 5-52

that can be substituted into Equation 5-51 to eliminate the basic variables and have an equation
only in terms of the nonbasic variables.

216

m

E af;(x,) dxj,b + E dej’nb =0 fori=1,2,...,m (5-52)

o 0x; jome 0%,
or in matrix form Equation 5-52 is:
afix) o afi(xe) afix) o afi(xe)
0x, 0x,, dx,, 0x,, ox, dx,. .,
: : : + : : =0 (5-53)
8fm (xk) . afm (xk) dxm,b afm (xk) . afm (xk) dxn,nb
ox, ox,, 0x,,,, ox,

The following equation defines B, as the matrix of the first partial derivatives of f;
associated with the basic variables, xp, and B, as the matrix associated with the non-basic
variables, Xup, 1.€.:

B,dx, + B, dx,, =0 (5-54)

This is a convenient form of Equation 6-53 that can be used to eliminate dx, from
Equation 6-51. Solving Equation 6-54 for dx; gives:

dx,=-B;'B,dx,, (5-55)
Substituting Equation 5-55 into Equation 5-51 gives:

V'Y(x,)dx,, =-V"y,(x,)B;'B,dx,,+V"y,,(x,)dx,, (5-56)

Eliminating dx,» from Equation 5-56, the equation for the reduced gradient VT¥(x) is
obtained.

VY (x)=V"y,(x)-V"y,(x,)B, B, (5-57)

Knowing the values of the first partial derivatives of the economic model and constraint
equations at a feasible point, the generalized reduced gradient can be computed by Equation 5-57.
This will satisfy the economic model and the constraint equations. The generalized reduced
gradient is used to locate better values of the economic model in the same way unconstrained
gradient search was used, i.e.

X, =X+ VY (x,) (5-
58)

217

where a is the parameter of the line along the reduced gradient. A line search on « is used to locate
the optimum of Y(x.») along the generalized reduced gradient line from x;.

In taking trial steps as o is varied along the generalized reduced gradient line, the matrices
B, and B, must be evaluated along with the gradients Vy(xs) and Vy.»(xx). This requires
knowing both x,,» and x; at each step. The values of x,,» are obtained from Equation 5-58. However,
Equation 5-48 must be solved for x»; and frequently, this must be done numerically using the
Newton-Raphson method. As pointed out by Reklaitis et al. (15) most of the computational effort
can be involved in using the Newton-Raphson method to evaluate feasible values of the basic
variables, x5, once the nonbasic variables have been computed from Equation 5-58. The Newton-
Raphson algorithm in terms of the nomenclature for this procedure is given by the following
equation.

Xy =X, =By f(x;5,%,) (5-59)
where the values of the roots of the constraint equations, Equation 6-47, are being sought for x5,
having computed x.» from Equation 5-58. Thus, the derivatives computed for the generalized

reduced gradient B, matrix can be used in the Newton - Raphson root seeking procedure also.

The following example illustrates the generalized reduced gradient algorithm. It is a
modification and extension of an example given by Reklaitis, et al. (15).

Example 5-11 (15)

Solve the following problem by the generalized reduced gradient method starting at point x,
(0,0). The constrained minimum is located at (1.2, 1.6) as shown in Figure 5-7.

minimize: —2x1 —4x2 +x12+ x>+ 5
subject to: —x1+2x <2

x1+ x <4

218

3.2

3.4/ (Qof Cos\f Function
30 /
2.8 —/ — T ~ \ \

2.6 // N \X| +xp =4
24 / /——\\ \ v
Unconstrained
2.2+ / Minimum \ \
1,2
20 ((o) / \-xl+2x2=2
1.8

x2 (0.781,1.56)
1.6 \lnf”s'b'e\ x3(1.2, 1.6) Constrained

X2

inimum

4K (096.1.48) / /
1.2 Feasible X, (1.61, 1.15) /
1.0
o8} T~ / /
06\ /
04} - —
0.2}

lxo(()l.O) .

! 1 i 1 1 1 [l 1 1 1 1 i 1 |

O 020406081012 1.4 1.6 1.8 20 2224 2.6 28 3.0 3.2 34
X

Figure 5-7 Diagram of the Solution of the Multivariable Optimization Problem
in Example 5-11 by the Generalized Reduced Gradient Method

Solution: The problem is placed in the generalized reduced gradient format, Equation 5-44.
minimize: y =-2x; —4x2 + x> +x%+5
subjectto: f1 = —x1+2x2 +x3 -2=0
L= x1t x +xs—4=0
where x3 and x4 have been added as slack variables.
To begin x; and x» are selected to be basic variables, and x3 and x4 to be nonbasic variables,

although others could be selected. The equation for the generalized reduced gradient is Equation
5-57 and for this problem is:

219

Computing the values of the partial derivative gives:

The generalized reduced gradient equation becomes:

where

0x,
Y
0x,

oy =-2+2x ofi =-1
Ox1 Ox1

oy =-4+2x

ox2

oy=0 oh=1
0x3 Ox1
oy=0

OX4

)%
ox,
%
ox,

G_y
3 8x3 ay
| oy ax,
ox,

T 7 1T

L

K
0x,

-1
-1 2 _ -1/3 2/3
1 1 1/3

%y

0x,

1/3

0x,

ox,

ofi =2

ox2

=1

ox2

| -]

220

[of,

of,

o,

0x,

0x,

ofi=1

Ox3

bB=0

Ox3

oy

o

I

ox,

o,

ox,

-1
ox -
I 25 PRSP el B I
11 |]o 1

=0

OX4

=1

OX4

The equation for the generalized reduced gradient through xo (0,0) is:

1T

oy

T
ox _
3 _ 0 _[o 4] 1/3 2/3
oY 0 1/3 1/3

ox,

1o |_| 2/3
0 1 8/3

The generalized reduced gradient line through starting point xo (0, 0, 2, 4) is given by Equation
5-59 and for this example is:

x3=2+23a
x4=4+8/3a
A line search is required. The equations for x; and x2 are needed in terms of x3 and x4 to be able
to evaluate dy/da since y = y(x1, x2). Solving the constraint equations for x1 and x> in terms of x3
and x4 gives:
x2=—1/3(03+ x4)+2
x1= 1/3(x3—2x4)+2
Substituting to have x1 and x> in terms of a gives:
x2==13Q2+23a+4+83a)+2=-10/9 a
xi= 13[2+23a-2(4+83a)]+2=-14/9«a
Substituting into y gives:
y=-2(-14/9a — 4(-10/9)a + (—14/9 a)* + (-10/9 a)* + 5
y=068/9 o +296/81 0> + 5

Locating the minimum along the reduced gradient line:

dy _68 2(296) _

0
doa 9 81
a=-153/148
Solving for x1, x2, x3 and x4 gives:
x1 = 1.608 x3=1311

221

x2=1.149 x4=1.243

The location of point x; (1.608, 1.149, 1.311, 1.243) is shown in Figure 5-7. Also, the constraint
equations are satisfied.

Now, repeating the search starting at x; gives the following equation for the reduced gradient.

- 1T
3y
- T
ox -
Sl D] [2e2a608) —as2aag9)]| IS 20O 0979
P4 0 173 13 |0 1]| -0243
ox,

The equations for x1, x2, x3 and x4 in terms of the parameter of the reduced gradient line are now
computed as:

x3=1311+0.973a
x4=1.243 - 0.243a
x1=1.61+0.486a

x2=1.149 — 0.243a

Using the above equations, the minimum along the reduced gradient line is located by an exact
line search.

y=-2(1.61+0.486a) — 4(1.149 — 0.2430a) + (1.61 + 0.486a)*> + (1.149 — 0.2430)> + 5
Setting dy/da equal to zero and solving for a gives:
o=—1.705

With this value of a, the values for xi, x2, x3 and x4 are:

x1=0.781
x2=1.563
x3 =—0.348
x4=1.657

222

The point x; (0.781, 1.563, —0.348, 1.657) is an infeasible point as shown in Figure 5-7. The first
constraint is violated (x3 = —0.348). This constraint is active, an equality; and the value of « has
to be reduced to have the slack variable x3 be equal to zero, i.e.

0=1.311+0.973a

a=-1.347

Recalculating x1, x2 and x4 for a = —1.347 gives:

x1 =0.955
x2=1.476
xa=1.57

The point to continue the next reduced gradient search is x> = (0.955, 1.476, 0, 0.157).

Now 0f1/0x3 = 0 in the reduced gradient equation since the first constraint is an equality (x3 = 0).
The reduced gradient equation at x> becomes:

1T

)%

- T

P _

e —[—2+2(0.955) —4+2(1.476)] /32731104 1 0
oY 0 173 13 | o 1 || 0409
ox,

Reduced gradient line is determined as was done previously:
x4=1.57 + 0(0.409)
x3=0
x1=0.953 -0.273a
x2=1.477 - 0.136a

In this case the reduced gradient line search will be along the first constraint, since it is now an
equality constraint (x3 = 0).

Solving for the optimal value of a gives:

y=-2(0.953 — 0.2730) — 4(1.477 — 0.136a) + (0.953 — 0.273a)* + (1.477 — 0.1360)* + 5

223

Setting dy/do. = 0 gives oo = - 0.890. Then solving for xi1, x> and x4 gives:
x4=1.57-0.890(0.409) = 1.20
x1=0.953 - 0.273(—0.890) = 1.20
x2=1.477 -0.136(—0.890) = 1.60

The point x3 (1.20, 1.60, 0, 1.20) from the reduced gradient search is the minimum of the function
as shown in Figure 5-7.

A summary of the steps is as follows:
x0=1(0,0,2,4)
x1 =(1.608, 1.149, 1.311, 1.243)
x2 =(0.781, 1.563, —0.348, 1.657) infeasible
x2 = (0.955, 1.476, 0, 1.57) reducing a to have x3 =0
x3=(1.2,1.6,0, 1.2)
The point x3 (1.20, 1.60, 0, 1.20) is the minimum of the function as shown in Figure 5-7.

The texts by Reklaitis et al. (15), Himmelblau (8) and Avriel (9) are recommended for
information about additional theoretical and computational details for this method. These include
procedures to maintain feasibility, i.e. the GRG, GRGS and GRGC versions, stopping criteria,
relation to Lagrange multipliers, treatment of bounds and inequalities, approximate Newton -
Raphson computations, and use of numerical derivatives, among others.

In the first comprehensive comparison of nonlinear programming codes was conducted by
Colville (21), and the generalized reduced gradient method ranked best among 15 codes from
industrial firms and universities in this country and Europe. This algorithm has been a consistently
successful performer in computer programs implementing it to solve industrial problems. Lasdon
(2) reported that he has a GRG code available for distribution (Professor L. S. Lasdon, School of
Business Administration, University of Texas, Austin, Texas 78712), and this article lists several
other sources of GRG codes.

Penalty, Barrier and Augmented Lagrange Functions: These methods convert the
constrained optimization problem into an unconstrained one. The idea is to modify the economic
model by adding the constraints in such a manner to have the optimum be located and the
constraints be satisfied. There are several forms for the function of the constraints that can be
used. These create a penalty to the economic model if the constraints are not satisfied or form a
barrier to force the constraints to be satisfied, as the unconstrained search method moves from the

224

starting point to the optimum. This approach is related to the method of Lagrange multipliers,
which is a procedure that modifies the economic model with the constraint equations to have an
unconstrained problem. Also, the Lagrange function can be used with an unconstrained search
technique to locate the optimum and satisfy the constraints. In addition, the augmented Lagrange
function combines a penalty function with the Lagrange function to alleviate computational
difficulties associated with boundaries formed by equality constraints when the Lagrange function
is used alone.

These penalty function type procedures predate the previously discussed methods and have
been supplanted by them. They have proved successful on relatively small problems, but the newer
techniques of successive linear and quadratic programming and generalized reduced gradient were
required for larger, industrial-scale problems. However, the newer techniques have incorporated
these procedures on occasions to ensure a positive definite Hessian matrix and to combine the
equality constraints with the profit function, which then leaves only the inequalities as constraints.
The following paragraphs will review and illustrate these methods since they are used in
optimization codes and as additions to the newer methods. More details are given in the texts by
Avriel (9), Reklaitis, et al. (15), and Gill, et al. (6) and in the review by Sargent (33).

The penalty function concept combines two ideas. The first one is the conversion of the
constrained optimization problem into an unconstrained problem, and the second is to have this
unconstrained problem's solution be one that forces the constraints to be satisfied. The constraints
are added to the economic model in a way to penalize movement that does not approach the
optimum of the economic model and also satisfy the constraint equations. The optimization
problem can be written with equality and inequality constraints as:

minimize: y(X) (5-60)
subject to: filx)=0 fori=1,2,..,h
filx)>0 fori=h+1,...m

By combining the economic model and constraint equations, we can form a penalty
function as follows:

P(x, r) =y(x) + F[r, f(x)] (5-61)

The term F[r, f(x)] is a function notation that includes the constraint equations and a penalty
function parameter r as variables.

Various forms of this function " have been suggested and used with various degrees of
success. Some of these forms are given in Table 5-1. Referring to the table we see that these
functions are of two types, interior and exterior penalty functions. The interior penalty function
requires a feasible starting point, and each step toward the optimum is a feasible point. ~An
example of an interior penalty function with an economic model subject to inequality constraints
is:

225

minimize: P(x,r)=y(x)+"i T (1)]2
i=h+1 i X

(5-62)

Table 5-1. Some Forms for the Function F used to Construct the Penalty Function (9,15,26,35)

Interior penalty function forms for inequality constraints (require feasible points and also are
called barrier functions), (fi(x)>0):

rlfi(x) rIfix)1?

r In[fi(x)] r| f(®) | if fi(x) < 0, otherwise 0
Exterior penalty function forms for equality constraints fi(x)=0

[fi(x)l/r i) /r

[(x)]*™/r (M appositive integer) [fi(x)]* /r'?

Exterior penalty function forms for inequality constraints (feasible points are not required):
r[fi(x)]? if fi(x) <0, otherwise 0

Constraint xj on: [; <x; <u;

u;-1;

2M
2x,—(l. +u;
,[M‘ (M a positive integer)

An augmented Lagrange function:

2

h m
M(x, A1) = y(x)+ D A f(0)+r Y [f,(0)]

i=h+1

226

Interior penalty functions are applicable only to inequality constraints, and the term in
Equation 5-62 with the constraints will increase as feasible points approach the boundary with the
infeasible region. Consequently, the function P(x,) will appear to encounter a barrier at the
boundary of the feasible region. Therefore, interior penalty functions are called barrier functions,
also. The other forms of the interior penalty function shown in Table 5-1 can be used equally as
well as the one used for illustration in Equation 5-62.

The parameter » in Equation 5-62 and Table 5-1 is used to ensure convergence to the
optimum and have the constraint equation be satisfied. Initially, it has a relatively large value
when the search is first initiated. Then, the search is repeated with successively smaller values of
r to ensure that the penalty term goes to zero, and at the optimum P(x, » — 0) = y(x). This
procedure will be illustrated subsequently. The value of » can be selected by trial and error, and
normally a satisfactory starting value will be between 0.5 and 50 according to Walsh (26). Also,
Walsh (26) reported a formula to compute the value of , which involves evaluating the Jacobian
matrix of the economic model and the Jacobian and Hessian matrices of the F function at the
starting point.

Exterior penalty function forms start at a feasible point; and they can continue toward the
optimum, even though infeasible points are generated. An example of an exterior penalty
function is:

h

minimize: P(x,r)=y(x)+r™> 3 (f0)) +r Y (fi(x)) (5-63)

i=1 i=

E]

>

In this form infeasible points may be generated as the unconstrained search method moves.
Convergence is obtained using the parameter », and a feasible and optimal solution will be
obtained.

Exterior penalty functions used for equality constraints can be combined with interior
penalty functions for inequality constraints to have what is referred to as mixed interior-exterior
penalty functions. The one used successfully by Bracken and McCormick (36) has the form:

h

minimize: P(x,r)= y(x)+r " E(fi(x))2 +r

i=1 i=

(fix0)" (5-64)

(NgE!

>

=1

The following example illustrates that the penalty parameter » must go to zero to arrive at
the optimal solution. After this example, the results of Bracken and McCormick (36) will be
summarized to illustrate the procedure of using an unconstrained search technique with a penalty
function to locate the optimum of the constrained problem.

227

Example 5-12 (37)

Form the exterior penalty function for the following problem using the penalty parameter », and
use the classical theory of maxima and minima to locate the minimum. The result will include the
parameter ». Show that it is necessary to have r go to zero for the optimal solution of the
unconstrained problem (penalty function) to be equal to the optimal solution of the original
constrained problem.

minimize: 2x12 + 3x22
subject to: x1 +2x2=15
The penalty function is:
P(x1, x2, 7) = 2x12 + 3x2% 4+ (1/r) [x1 + 2x2 — 5]?
Setting the first partial derivative with respect to x1 and x> equal to 0 gives:

OP=4x1+2[x1+2x2—5]=0
ox1 r

OP=06x2+4[x1+2x2—-5]=0
ox2 r

Solving for x1 and x; gives:

x1=__15 x2=_20 _
11+ 6r 11+ 6r

To have the optimal solution of the penalty function be equal to the optimal solution of
constrained problem » must be zero, i.e.,

x1=15/11 x2=20/11
A solution using Lagrange multipliers will give these results, also.

When a search technique is used, a value of r must be selected which is sufficiently large
to allow movement toward the optimum. As the optimum is approached successively smaller
values of r must be used to have the optimum of the penalty function approach the optimum of the
constrained problem. Bracken and McCormick (36) have illustrated this procedure by solving the
problem shown in Figure 5-8. For this problem, a mixed penalty function was selected in the form
of Equation 5-64.

228

Figure 5-8. The Use of a Penalty Function to Converge to the Optimum of a Constrained Problem
by Bracken and McCormick (36).

Constrained problem:
minimize: x1 =2 +(x2— 12 =y
subject to: —xi?/4 — x?+1 >0

X1 —2x +1 =0
Unconstrained mixed penalty function problem:
minimize: (x1 —2)? + (x2 — 1)> + rf[—x1%/4 — x> + 1]+ 712 [x1 — 2x2 + 1]?

Optimal solution using SUMT program:

r X1 X2 y

1.0 0.7489 0.5485 1.7691
4.0 x10? 0.8177 0.8323 1.4258
1.6 x107 0.8224 0.8954 1.3976
6.4 x107 0.8228 0.9082 1.3942
2.56x 10 0.8229 0.9113 1.3935
1.024 x 107 0.8229 0.9113 1.3935
4.096 x 10” 0.8229 0.9113 1.3935

Starting point was X0 (2,2) with » = 1.0

Analytical solution x"[(—1 + V7)/2 = 0.8229, (1 + V7)/4 = 0.9114] and y(x") = 1.3935

229

For the unconstrained problem to represent the constrained problem and have the same
solution at the optimum, i.e. P(x", r) = y(x"), the following conditions must be satisfied:

li 4 -1
g3 o

i=1

Ji(x)=0 for i=12,...h
(5-65)

[i(x)=0 for i=h+1,2,....m

The computational effort required to meet the requirements of Equation 5-65 is illustrated
by the problem given in Figure 5-8. The search technique SUMT began at starting point Xo (2, 2)
and arrived at the apparent optimum (0.7489, 0.5485) with a value of = 1.0. The search technique
was started again at point (0.7489, 0.5485) using a value for » 0of 4.0 x 102 to arrive at the apparent
optimum (0.8177, 0.8323) as shown in the table in Figure 5-8. This procedure was repeated
continually reducing the value for r until an acceptable result was obtained for x; and x2. In this
case, the values from one optimal solution to the next agreed to within four significant figures. At
this point, the value of 7 had decreased to 4.096 x 107, practically zero for the problem.

In summary, significant computational effort is required to ensure that the solution of the
penalty function problem approaches the solution to the constrained problem. For the illustration,
the optimization problem was solved seven times as » went from 1.0 to 4.096 x 10 to have a
converged solution of the unconstrained problem to the constrained one. This is typical of what is
to be expected when penalty functions are used.

The conventional penalty function method obtains the optimal solution only at the limit of
a series of solutions of unconstrained problems (33). Consequently, exact penalty functions have
been proposed that would give the optimal solution in one application of the unconstrained
algorithm. Several exact penalty functions have been constructed (33); but their use has been
limited since they contain absolute values that are not differentiable.

230

A procedure corresponding to the penalty function method has used the Lagrange function.
The Lagrange function is formed as indicated in Equation 5-66 where the slack and surplus
variables have been used for the inequality constraints.

L(x,7) = y(x)+ ¥ 2.f,(x) (5-66)

In this situation an initial estimate is made for the Lagrange multipliers, and the unconstrained
problem given by Equation 5-66 is solved for an apparent optimum, x. However, this value of x
usually does not satisfy the constraints; and the estimated values of the Lagrange multipliers are
adjusted to give a new unconstrained problem that is solved again for the apparent optimum. This
procedure is repeated until the optimum is located, and the constraints are satisfied. Methods have
been developed to estimate the values of the Lagrange multipliers (33) for this procedure. The
following simple example illustrates this idea of having to resolve the unconstrained optimization
problem with various values of the Lagrange multipliers until the constraints are satisfied.

Example 5-13
Form the Lagrange function for the following constrained problem and solve it by analytical
methods for values of the Lagrange multiplier of —1/2, —1.0 and —2.0. Compare these results with
the analytical solution of x; = x> = \(2)/2 and A = —(2)/2.

maximize: y = x1 +x2

subject to: f=x1> + x> —1=0
The Lagrange function is:

L (x1,x2, A)=x1+x2+ A (x> +x22-1)
Using 4 = -1 the Lagrange function becomes:

L@, x2)=x1+x2+(-1) (xi>+x22—1)

Solving by analytical methods gives x1 = 1/2, x> = 1/2; and using these values in the constraint
gives:

=022+ 12)P-1==12%# 0

The other values are determined in a similar fashion, and the following table summarizes the
results.

231

-12 1 1 1
—(2)/2)2 N(2)2 0

-1 12 12 -12
-2 1/4 1/4 718

The value of the Lagrange multiplier goes from —1 to —1/2 as the value of /' goes from —1/2 to 1
with the value of /= 0 (constraint satisfied) at A = —(©2)/2.

Using the Lagrange function is similar to using the penalty function in converting a
constrained problem into an unconstrained one in the sense that the problem has to be resolved
until the unconstrained problem has converged to the solution of the constrained one. There
appears to be a disadvantage in using the Lagrange function because a set of Lagrange multipliers
(one for each constraint) has to be adjusted while only one penalty parameter is required. However,
it turns out that there are difficulties in implementing penalty functions including discontinuities
on the boundaries of the feasible region (11), the Hessian matrix of the penalty function can
become ill conditioned (9) and the distortion of contours as r grows smaller (15). Also, it has been
found that using the Lagrange function alone has been relatively unsuccessful especially for large
problems (8), except when the constraints are linear (38).

Combining penalty functions and Lagrange multipliers has proved more successful, and
this technique is called the augmented Lagrange method or the method of multipliers (6, 9, 15),
and the relation between the penalty parameter and the Lagrange multipliers has been reported (9,
28). The augmented Lagrange function can be written as follows (11).

h m
M(x,2,r)= y(0)+ Y A fi(0)+r Y [[] (5-67)

i=h+l1
and an algorithm for updating the Lagrange multipliers has been given by Avriel (11).
Aij+1 = Aik - 1 fi(xk) 5-68)

Avriel (11) has given an example of the use of this procedure for a simple problem. There
have been difficulties associated with this method in the choice of the penalty parameter . As
discussed by Gill, et al. (6), too small a value can lead to an unbounded number of unconstrained
searches having to be performed, in addition to a possible ill-conditioned Hessian matrix of the
Lagrange function. As will be seen in the section on comparison of techniques, these methods
have not performed as well as successive linear and successive quadratic programming and the
generalized reduced gradient method.

232

Other Multivariable Constrained Search Methods: Other methods for constrained
multivariable problems fall into a class referred to as feasible directions, projection methods or
methods of restricted movement. Also, there are random search procedures, cutting plane methods
and feasible region elimination techniques. The concepts associated with each of these procedures
are described and references given for sources of more information. These techniques have
founded limited application, and the reasons for this are described.

Restricted Movements: These methods are described in some detail by Avriel (9, 11) and
others (6, 8, 15, 27). According to Reklaitis et al. (15) even though there are similarities between
these projection methods and reduced gradient techniques, the latter are preferred because sparse-
matrix methods can be used but the former methods are said to have "sparsity-destroying matrix
products." Consequently, the details of these methods are available in the previously cited
references, and only an illustration from McMillan (27) will be given to show some of the concepts
involved.

A simple problem is shown in Figure 5-9 where the starting point is in the feasible region
at point Xo (8, 2). There are three constraints that bound the feasible region, and the unconstrained
maximum lies outside of the region. This gradient-projection method begins by a single variable
search along the gradient line to locate a maximum. The maximum along the line will be found
where a constraint is encountered at point x1(6.6, 3.6). The gradient line at point x; points into the
infeasible region. Therefore, to continue to move toward the optimum, the gradient line is
projected on the constraint, and the search proceeds in this projected-gradient direction along the
constraint. The constraint is linear, and a single variable search for the maximum locates point x>
(6,4) that is the intersection with another constraint. The gradient line at x» (6, 4) points into the
infeasible region so it is projected on the constraint, in this case x> = 4; and the single variable
search for the maxima continues. The search arrives at point x3 (5.5, 4), which is the constrained
maximum.

In summary, the procedure began with an unconstrained search method, gradient search,
until a constraint was encountered. The unconstrained search line was projected on the constraints
to be able to stay in the feasible region, and it moved until the maximum was located. Other
unconstrained search methods could have been used rather than gradient search, such as the BFGS
method. Also, had the constraints been curved, the search method would have difficulty following
the constraint; and a hemstitching pattern would have developed as the search method attempted
to follow the active nonlinear constraint. This pattern is illustrated in Figure 5-10 and it is one of
the problems encountered with this method, as discussed by Avriel (9).

233

Unconstrained Maximum
(655)

Constrained Maximum x5 (5.5,4)

4

X2

Z5/12 %, + %, =2

X

Figure 5-9 lllustration of the Gradient Projection Method, after McMillian (27)

INFEASIBLE REGION

Constrained Maximum

Gradient
FEASIBLE REGION

Constraint

Figure 5-10 Hemstitching Pattern Developed by Restricted Movement Methods
Following an Active Constraint, after Avriel (9)

234

Cutting Plane Methods: In these methods (15, 28), the nonlinear optimization problem
is formulated as follows. Beginning with the nonlinear optimization problem as:

minimize: y(x) (5-69)
subject to: fi(x) >0 fori=1,2,...,m
The problem is converted to the following one:
minimize: xo
subject to: fi(x) > 0 (5-70)
Xo - y(x) =0

which gives a linear economic model. Then, if a starting point is selected that violates only one
of the constraints, this constraint can be linearized; and the resulting problem can be solved by
linear programming. At the new point, the most violated constraint is added, and linearized to find
the third point in the search. The procedure continues adding constraints until the optimum is
reached and the constraints are satisfied. However, a number of computational difficulties have
been encountered with this procedure according to Avriel (9); but it has been attractive because
convergence to the global optimum is guaranteed, if the economic model and constraints are
convex functions.

Random Search: In random search, the feasible region is divided into a grid where each
nodal point is considered to be the location of a point to compute the value of the economic model,
i.e. an experiment. Then if an exhaustive search is performed by calculating the value of the
economic model at each point in the grid, these experiments could be ranked from the one with
the maximum value of the economic model to the one with the minimum value. However, a
specified number of these experiments could be selected randomly, and the value of the economic
model evaluated at the points. It would be possible to make a statement about the point with the
largest value of the economic model being in a certain best fraction of all of the experiments with
a specific probability. For example, if there were 1000 nodal points, and if one experiment was
placed randomly in these points, the probability of choosing one in the top 10% would be 100/1000
=0.1. Also, the probability of not choosing one in the top 10% would be 1 - 0.1 =0.9. (Probability
is defined as the relative frequency of occurrences of an event.)

If two experiments were placed randomly in the grid on the feasible region, the probability
of not finding one in the top 10% would be (0.9)> = 0.81, and the probability of one of these two
being in the top 10% is 1 —0.81 = 0.19. Continuing, after n trials the formula is:

p(0.1)=1— (0.9’ (5-71)

For n = 16, the probability of finding one of these 16 experiments to be in the best fraction of 0.1
would be p (0.1) = 0.80. For n =44, p (0.1) = 0.99 which is almost a certainty.

235

The generalization of this procedure, Wilde (10), is given by the following equation.

pH=1-0A-p" (5-72)

In this equation p (f) is the probability of finding at least one nodal point in the best fraction, f,
having placed n experiments randomly in the feasible region. Several values of n have been
computed by Wilde (10) having specified fand p(f). These are given in Table 5-2. Equation 5-72
was used in the following form for these calculations.

n=In[1-p(H)/in (1= (5-73)

Table 5-2. The Number of Experiments, n, Required to Have at Least One in the Best Fraction,
£, with a Probability, p(f), having a Total of 1000 Possible Experiments, after Wilde (10).

120)
f 0.80 0.90 0.95 0.99
0.1 16 22 29 44
0.01 161 230 299 459
0.005 322 460 598 919

Referring to Table 5-2, 16 experiments would be required to have at least one in the top
10% with a probability of 0.80 from a total of 1000 experiments. To have at least one value of the
economic model in the top 0.5% with a probability of 0.99, 919 experiments of the total of 1000
would have to be measured, i.e. the economic model would have to be evaluated at almost all of
the nodal points. Also, it should be noted that the values for n reported in the table have been
rounded off, e.g. 919 is 918.72... computed from Equation 5-73. If there had been a total of 100
experiments 92 would have been required for at least one in the top 0.5 % with a probability of
0.99.

The number of nodal points is somewhat independent of the number of variables in the
economic model. Also, the results are independent of the number of local maxima or minima.
These two facts are considered to be the important advantages of random search. This has led to
adaptive random search where a random search is conducted on part of the feasible region. Then
another section of the feasible region is selected which contained the largest value of the economic
model to repeat the placing of another set of random measurements. This converts random search
into a search technique, and it has been called adaptive random search by Gaddy and co-workers
(40, 41).

236

Using this technique Martin and Gaddy (41) have described the optimization of a maleic
anhydrate process. They showed that their adaptive randomly directed search method efficiently
optimized the types of problems described as large, heavily constrained and often containing
mixed integer variables.

Feasible Region Elimination Techniques: These methods are described in some detail
by Wilde and Beightler (12) and are an extension of the ideas associated with the interval
elimination, single variable search methods. Two techniques are contour tangent elimination and
multivariable dichotomous elimination. The first method is applicable only to functions that are
strongly unimodal; and the second procedure requires that functions be rectangularity unimodal,
which is more restrictive than strongly unimodal.

A strongly unimodal function has a strictly rising path from any point in the feasible region
to the optimum. Consequently, a function with a curving ridge would not be strongly unimodal.
An example of a strongly unimodal function is given in Figure 5-11. The line from point A to the
maximum illustrates a strictly rising path.

The multivariable elimination technique is illustrated in Figure 5-11 for two independent
variables. First, a starting point, Xo, in the feasible region is selected; and a contour tangent line is
determined. The area below the contour tangent can be eliminated since it does not contain the
optimum; and the procedure continues by placing another experiment in the area that contains the
optimum, e.g. point x;. Measuring the contour tangent at xi, an additional region can be
eliminated. In this case it will be above the contour tangent line, and the region that contains the
maximum is reduced. Again, another measurement is placed in the remaining area that contains
the optimum, e.g. x3; and the contour tangent is determined. Eliminating the area to the left of this
contour tangent, now the region that contains the optimum has been reduced to the triangular
shaped area bounded by the three contour tangents as shown in Figure 5-11. The procedure
continues in this fashion until the region that contains the optimum has been reduced to a
satisfactory size. The details of the computational procedure are given by Wilde and Beightler
(12), and the method has had limited use because of the restrictive requirement of being applicable
only to strongly unimodal functions.

There are a number of other methods that could have been mentioned, all of which have
had some degree of success in optimizing industrial problems, and these are described in the
references at the end of this chapter. Many of these methods are modifications and/or
combinations of the procedures that have been discussed. In the next section comparisons will be
given of the performance of constrained multivariable procedures.

Comparison of Constrained Multivariable Search Methods: The evaluation of the
effectiveness of constrained multivariable optimization procedures depends on several interrelated
things. These are the optimization theory, the algorithm or the combination of algorithms to
implement the theory, the computer program and programming language used for computations
with the algorithms, the computer to run the program and the optimization problems being solved.
In comparing constrained optimization procedures, usually the same optimization problems are

237

Figure 5-11 lllustration of the Method of Contour Tangents, after Wild and Beightler (12)

solved; and comparisons are based on measurements of computer time or the number of times the
economic model and constraints are evaluated to come within a certain fraction of the optimum.
If different computers are used to solve the optimization problems, then a timing program such as
a matrix inversion is run on each machine to give a point of comparison among the computers.
Consequently, if there is a superior optimization algorithm, the other factors that affect
performance have made it difficult to detect.

There is debate about which algorithms and/or computer codes are the better ones, and
Lasdon (3) recommended having available several computer codes that incorporate the more
successful methods. A judgment about the ones to have can be obtained from the following
reviews of industrial experience reporting the use of optimization procedures on process and plant
problems.

In an Exxon study by Simon and Azma (1) fifteen industrial optimization problems were
solved using four established optimization codes, and their results are summarized in Table 5-3.
The fifteen problems had from 5 to 250 variables; and there were a number of active constraints
at the optimum, ranging for each size problem from 50 to 95% of the number of variables.

238

Two of the four optimization codes, ECO and SLP, were developed by Exxon. The ECO
program used successive quadratic programming with many of the features described previously
for the Wilson, Han, Powell algorithm including a Davidon, Fletcher, Powell update for the
Hessian matrix. The SLP program used successive linear programming as described previously
with enhancements to speed convergence and circumvent problems with infeasibilities. The
GRG2 program used the generalized reduced gradient method, and this program was developed
by Lasdon (3). The MINOS program used a projected augmented Lagrange algorithm combined
with the generalized reduced gradient algorithm, and this program was developed by Murtagh and
Saunders (43).

The problems were run on Exxon's IBM 3033 computer, and the key results extracted from
the article are given in Table 5-3. These include the average and range of the number of function
calls and the average CPU time used. The optimization applications were complex simulations,
and numerical differentiation was required. Consequently, the number of times that the economic
model and constraints were evaluated (function calls) was viewed as the primary indicator of
performance. CPU times were said to be a guide to performance and were not available for SLP
optimizations. Also, two termination criteria were used in the various convergence tests of the
programs to have the value of the economic model and constraints to be within the tolerance of
0.001 and the economic model to be until 0.1% of the optimum.

In reviewing the results in Table 5-3, SLP and MINOS solved all of the test problems. It
was reported by Simon and Azma (1) that the performance of SLP was better on more tightly
constrained problems. Also, they reported that MINOS had impressively fast run times from the
use of sparse matrix computational features. The GRG2 code solved all of the 5- and 20-variable
problems and three of the six 100- variable problems. This code required the greatest number of
function calls compared to the others. The ECO code solved all of the 5- and 20- variable
problems, the two 100-variable, linearly constrained problems and one of the 100-variable,
nonlinearly constrained problems. It was reported that nonlinear constraints caused numerical
difficulties for the ECO code, because it did not contain special error checking and matrix inversion
features of the other codes.

This study has shown that to solve large industrial problems these three optimization
algorithms must be supplemented with other features associated with numerical differentiation and
sparse matrix manipulations. In the following review of other comparison studies of optimization
codes, the three procedures, SLP, SQP and GRG, were found to be superior to others, and the
relative merits of these methods have been tabulated by Lasdon and Warren (22).

Successive linear programming (SLP) was said to be easy to implement, widely used in
practice, rapidly convergent when the optimum is at a vertex, and it was able to solve very large
problems. Furthermore, it did not attempt to satisfy equalities at each iteration, may converge
slowly on problems with non-vertex optimum and will violate nonlinear constraints until
convergence is reached.

239

Table 5-3 Comparisons of ECO, GRG2, MINOS and SLP from the Exxon Evaluation Using 29
Optimization Problems from Simon and Azma (1).

Optimization Problems Average Number of Function Calls (Range)
Number of Variables CPU Seconds
(Number of Problems) ECO GRG2 MINOS SLP

Convergence tolerance of 0.001

5 variables (7) 32(23-47) 87(33-203) 33(15-49) 73(44-94)
0.17 0.14 0.28 NR*
20 variables (12) 43(29-67) 537(475-672) 166(46-263) 181(111-
261) 5.0 3.0 0.95 NR
100 variables (2) 51(50 & 52) 445(1 problem) 48(46 & 50) 69(57-80)
linear constraints 42.0 332.0 1.8 NR
100 variables (4) Failed 2005(445 & 5225) 145(NR) 103(NR)
nonlinear constraints (2 problems only)
983.0 2.8 NR
250 variables (4) Not Run Not Run 881(747-1073) 131(105-
181)
25.0 NR
Convergence to 0.1% of optimum
5 variables (7) 16(12-24) 73(25-174) 23(15-29) 22(12-34)
0.1 0.1 0.2 NR
20 variables (12) 29(18-57) 486(311-647) 145(44-252) 131(62-
229)
3.7 2.5 0.8 NR
100 variables (2) 2521 & 28) 397(1 problem) 47(46 & 48) 19(14-24)
linear constraints 25.0 289.0 01.8 NR
100 variables (4) Failed 1682(606 & 2758) 162(82-208) 47(20-76)
nonlinear constraints (2 problems only)
44.60 2.7 NR
250 variables (4) Not Run Not Run 841(714-1062) 83(47-
175)
*NR - Not Reported 24.0 NR

240

Successive quadratic programming (SQP) is said to require the fewest function and
gradient evaluations of the three methods. It did not attempt to satisfy equalities at each iteration
and will violate nonlinear constraints until convergence is reached. It is more difficult to
implement than SLP and requires a good quadratic programming solver.

Generalized reduced gradient (GRG) is said to be probably the most robust and versatile,
being able to employ existing process simulators using the Newton-Raphson method. It is the
most difficult to implement and needs to satisfy equality constraints at each step of the algorithm.

In a dissertation by Sandgren (20) on the utility of nonlinear programming algorithms, 35
optimization algorithms were collected from university and industry sources of which 29 used
penalty functions, four used generalized reduced gradient (GRG) and two used successive linear
programming (SLP). Thirty test problems were selected from a variety of applications and sources
that had from 2 to 48 variables and 4 to 75 constraints. Computations were performed on Purdue
University's CDC 6500 computer in double precision, and all gradients were calculated using a
forward difference approximation. Solution times were measured, and a rating procedure was
used to rank the programs. The results showed that the four codes using the GRG algorithm and
one code using SLP solved 50% of the test problems using 25% or less of the computer time
averaged for all of the programs. This study established fairly conclusively that GRG and SLP
algorithms are superior to penalty function methods.

In a study by Schittkowski reported by Reklaitis, et al. (15) 22 optimization programs and
180 test problems were evaluated. The optimization program included 11 SLP, 3 GRG, 4 SQP
and 4 penalty function codes; and nine criteria were used and weighted to rank the programs. The
ranking of the algorithm classes were in the order of SQP, GRG, and SLP with penalty functions
last. Also, it was emphasized that these tests showed that code reliability is more a function of the
programming of the algorithm than the algorithm itself.

In probably the first comprehensive study of nonlinear constrained optimization
procedures, Colville (21) organized participants from fifteen industrial firms and universities and
had them test eight industrial problems with their 30 optimization codes. He grouped the methods
into five categories and developed a scoring procedure. This involved using a timing program for
matrix inversion since the results were obtained from a number of different computers. The highest
score was received by the GRG method.

Himmelblau (8) extended these results and ran some of Colville's and other problems on
the same computer. Again, the GRG code was the best performer. However, Palacios-Gomez et
al. (47) have shown that their improved version of SLP based on industrial computational
experience was comparable to or better than GRG2 and MINOS on Himmelblau's and other test
problems.

Successive quadratic programming and generalized reduced gradient algorithms have been
used with large computer simulations and flowsheeting programs for optimal design. Biegler and
Hughes (44, 49) showed that successive quadratic programming was effective for optimization of
a propylene chlorination process simulation. In the previously mentioned study of Jirapongpham,
et al. (42) it demonstrated that the WHP algorithm was effective for process flowsheeting
optimization. Locke and Westerberg (45, 46) used an advanced quadratic programming algorithm

241

with an equation-oriented process flow-sheeting program with success. Chen and Stadtherr (48)
reported enhancements of the WHP method that were effective on several chemical process
optimization problems. Biegler and Cuthrell (53) showed the Armijo line search to be one of
several improvements to successive quadratic programming. Drud (58) has developed a GRG
program CONOPT that used the industry standard MPS input format for large static and dynamic
problems at the World Bank.

In summary, the three methods of choice for optimization of industrial scale problems are
successive linear and successive quadratic programming and the generalized reduced gradient
method. The available programs that use these procedures are elaborate and use a combination of
techniques for efficient computer computations. Sources for programs using these methods are
given by Waren and Lasdon (2), Reklaitis et al. (15) and Gill, et al. (6). Waren and Lasdon (2) list
the desirable features of nonlinear programming software that can be used as a guide for selection
of codes.

The GAMS (General Algebraic Modeling System) programming language was developed
by the GAMS Development Corporation 1217 Potomac Street, NW, Washington, D.C. 20007
(http://www.gams.com). GAMS 1is a high-level modeling language for mathematical
programming and optimization. It consists of a language compiler and a stable of integrated high-
performance optimization programs called “solvers.” GAMS model types include Linear
Programming (LP), Mixed-Integer Programming (MIP), Mixed-Integer Non-Linear Programming
(MINLP), and different forms of Non-Linear Programming (NLP). There are over 30 solvers
(optimization codes) that can be selected to solve these programming problems. GAMS is
available for use on personal computers, workstations, mainframes and supercomputers. Note,
“programming,” means “scheduling” and not “computer programming.”

GAMS Distribution 26.1.0 (February 2, 2019) is currently available for download from
the GAMS web site www.GAMS.com without charge. GAMS will operate as a free demo system
without a valid GAMS license. The model limits in demo mode are 300 constraints and variables,
2000 nonzero elements, (of which 1000 can be nonlinear), 50 discrete variables (including semi
continuous, semi integer and member of SOS-Sets) with additional global solver limits of 10
constraints and variables. There are the installation notes for Windows, Mac, and UNIX. The
GAMS distribution includes the GAMS Manuals in electronic form, and hard copies can be
ordered through Amazon.

Stochastic Approximation Procedures

All of the procedures for deterministic processes can be confounded by random error.
There are search techniques that converge to an optimum in the face of random error, and some of
these will be discussed briefly following the approach of Wilde (10) who gives more details about
these methods. Random (e.g. experimental) error clouds the perception of what is happening and
greatly hampers the search for the optimum. Stochastic approximation procedures deal with
random error as noise superimposed on a deterministic process. Therefore, convergence to the
optimum must be considered first, and then efficiency can be evaluated. The works of Dvoretzky,
Kiefer and Wolfowitz in this area have been summarized in an excellent manner by Wilde (10).

242

Consequently, only the most important of these techniques will be described. This is the Kiefer-
Wolfowitz stochastic approximation procedure, and it is applicable for n independent variables.

With noise present a search technique is forced to creep to prevent being confounded by
random error. However, for unimodal functions, it can be shown that stochastic approximation
procedures converge to the optimum in the mean square and with probability one (10).

The Kiefer-Wolfowitz algorithm is given by the following equation (similar to steep
ascent). Beginning at a starting point Xo, the method proceeds according to this equation:

X ksl Xk YO+ € Xpse e s X, 1) = V(X = €1 X X, 1)
Yok || X2 | W V(X Xy + o "xn,k)fy(xl,k’ka = Cpre Xy) (5-74)
Cr
X kst Xk Y g X s X + €)= Y(X g X5 X i =€)
For convergence, the parameters ax and cx must satisfy the following criteria
lim
« =0
k—
lim
=0
k— o
oo (5-75)

The following example illustrates the use of the Kiefer-Wolfowitz procedure.
Example 5-13

Develop the procedure to obtain the minimum of a function of the form that is affected by
experimental error.

Axi(x1 - x17)? + Bxa(x2 - x27)?
The value of the minimum is somewhere on the interval:

1<x1"<3 1<x"<3

243

Starting with the mid-point of the interval, give the equations for the second, third and last of
twenty trials.

Solution: ar = 1/k, cx = 1/k '"* satisfies the criterion of the Equation 5-75.
For x2 = (x1,2, x2,2), k= 1:

Y2 | | 2
x,, 2

¥(2,3)-y(2.)

¥(3.2)-y(1,2) }

For x3 = (x1,3, x2,3), k= 2:

X3 X1, 1| ¥, +2_1/4’x2,2)_J’(x1,2 _2_”4’-’52,2)

+ —_—
374 14 -1/4
X3 X35 2 Vx5, %,,+277) = y(x,,,x,,-27")
For x20 = (x1, 20, X2, 20), k= 19:

~1/4 -1/4
x1,20 x1,19 1 y(x1,19+19 ’x2,19)_y(x1,19_19 ’x2,19)

-1/4

+_
3/4 -1/4
X220 X219 19 Y(X,10,%, 0 +1977) = y(x, 19, X, 0 =1977)

There are variations of the above procedure such as using only the sign of the
approximation to the derivatives. This can be used effectively when there is difficulty with
convergence that is being caused by the shape of the curve on either side of the optimum. Also, a
forward difference approximation can be used in evaluating the derivative rather than the central
difference form, but convergence is not as rapid.

Closure

In this chapter the important algorithms for optimizing a nonlinear economic model with
nonlinear constraints have been described, and their performance has been reviewed. This required
presenting methods for unconstrained problems first and outlining the strategy required to move
from a starting point to a point near an optimum. It was not possible to discuss each of the many
algorithms that have been proposed and employed as unconstrained multivariable search
techniques, but the references at the end of the chapter will lead to comprehensive descriptions of
those procedures. The texts by Avriel (9), Fletcher (4, 5), Gill et al. (6), Himmelblau (8),
McCormick (7) and Reklaitis et al. (15) are particularly recommended for this purpose. However,
the more successful algorithms were described for both unconstrained and constrained
optimization problems. It is recommended that the BFGS algorithm be used for unconstrained
problems and a Fortran program for this procedure has been included at the end of the chapter,
Table 5-4. For constrained problems the three methods that have been more successful in

244

comparison studies on industrial problems are successive linear and quadratic programming (SLP
and SQP) and generalized reduced gradient method (GRG). Advanced computation techniques
for numerical derivatives and sparse matrix manipulations are required to have efficient codes, and
sources to contact for these types of programs were referenced.

In addition to deterministic optimization methods, stochastic approximation procedures
were described briefly based on material from Wilde's book (10). These methods are designed to
locate the optimum in the face of experimental error, even though their movement is slowed to
avoid being confounded by random and gross errors.

This area of optimization is probably the most rapidly growing part of the subject. The
growth of computers and applied mathematical techniques for the solution of large systems of
equations promises to continue to allow significant developments to take place.

Table 5-4. FORTRAN Program with Sample Input and Output for BFGS Search of an
Unconstrained Nonlinear Function

C PROGRAM BFGS
C
C NOTATION :
C NTERM : NO. OF INDEPENDENT VARIABLES IN THE COST FUNCTION
cC X : INDEPENDENT VARIABLES
C EPS : STOPPING CRITERION ON COST FUNCTION
C ITER : LOOP COUNTER
C HESS : HESSIAN MATRIX
C K : PARAMETER OF THE LINE SEARCHED
C
C
INTEGER ITER
DOUBLE PRECISION TOLER, FUNCT, FIBON,
1 HESS(20, 20), GRAD(20), GRAD1(20), GAMMA(20), DELTA(20),
2 HG(20), K, ERR, ERROLD, EPS, GPHG, DPG, X(20), S(20)
C
COMMON X, S, NTERM
C
ITER =0
K =0
C
C READ AND ECHO INPUT DATA
C
C

READ(5,*) NTERM, EPS
READ(5,*) (X(I), I=1,NTERM)
WRITE(6,600) NTERM, EPS,(X(I), I=1,NTERM)
600 FORMAT(/,5X,'INPUT DATA : ',
245

& /,5X,'NO. OF INDEPENDENT VARIABLES, NTERM =',14,
& /,5X,'STOPPING CRITERION, EPS ='F94,
& /,5X,'STARTING POINTS, X =" 10(1X,F6.2))
WRITE(6,601)
601 FORMAT(/,5X,RESULTS ',
& /,5X, TTERATION',2X,'COST FUNCTION',6X,'VALUES OF X',12X,'
&K',

BFGS SEARCH

ONON®!

ERR=FUNCT(X)
CALL PRINT (ITER, NTERM, ERR, X, K)
CALL SLOPE(GRAD, ERR)

FORM THE IDENTITY MATRIX

ONGN®!

DO 40 I=1, NTERM
DO 40 J=1, NTERM
IF (LNE.J) HESS(LJ)= 0.0
IF (LEQ.J) HESS(LJ)= 1.0
40 CONTINUE
30 CONTINUE

ERROLD= ERR
ITER=ITER + 1

S (I) = HESSIAN*GRADIENT

ONON®!

DO 50 I=1, NTERM
S (I)= 0.0
DO 50 J=1, NTERM
S (I)= S(I) + HESS (I, J) * GRAD (J)
0 CONTINUE

K =ALPHA IN EQN.6-17

OO0 w

K= FIBON(DUMMY)

DETERMINE NEXT X VALUE WITH EQN.6-17
DELTA = ALPHA*HESSIAN*GRADIENT, IN EQN. 6-17

oNoNeN®!

DO 60 I=1, NTERM
DELTA ()=K * S (I)
X(I)= X(I) - DELTA (I)
60 CONTINUE
246

ERR= FUNCT(X)
CALL SLOPE(GRADI, ERR)

DETERMINE NEW BFGS MATRIX WITH EQN.6-20

NGNS

70

80

90

O AL Ph

DPG=0.0
DO 70 1= 1, NTERM
GAMMA (I)= GRADI (I) - GRAD (I)
DPG = DPG + GAMMA (I) * DELTA (I)
CONTINUE
DO 80 I=1, NTERM
GRAD (I) = GRADI (I)
CONTINUE
GPHG=0.0
DO 90 I=1, NTERM
HG(I)=0.0
DO 90 J=1,NTERM
HG (I) = HG (I) + HESS (1, J) * GAMMA (J)
GPHG = GPHG+ HESS (1, J) * GAMMA (I) * GAMMA (J)
CONTINUE
DO 100 1= 1, NTERM
DO 100 J = 1, NTERM
HESS (I, J) = HESS (1, J) - (HG (I) * DELTA (J) / DPG)
- (DELTA (I) * HG (J)/ DPG)
+ (1 + (GPHG / DPG)) * (DELTA (I)
* DELTA (J) / DPG)
CONTINUE
TOLER = DABS (ERR - ERROLD)
IF (TOLER .GE. EPS) CALL PRINT(ITER, NTERM, ERR, X, K)
IF (TOLER .GE. EPS) GO TO 30
STOP
END

ONGN®!

COMPUTATION OF PARTIAL DERIVATIVES

SUBROUTINE SLOPE(DERIV, E)

DOUBLE PRECISION DERIV (20), E, DELTA, TEMPX, Y, X(20),3(20), FUNCT

COMMON X, S, NTERM

DO 30 I=1, NTERM
DELTA= 1.0E-04
TEMPX= X(I)
X(I)= X(I) + DELTA
Y=FUNCT(X)
DERIV(I)= (Y - E)/DELTA
247

X(I)= TEMPX

30 CONTINUE
RETURN
END
C
C PRINT RESULTS
C
SUBROUTINE PRINT(I, N, VAL, X, K)
DOUBLE PRECISION X(20), VAL, K
WRITE(6,600) I, VAL,(X(J),J=1,N), K
600 FORMAT(7X,13,6X,F10.3,4X,10(1X,F7.3))
RETURN
END
C
C FIBONNACCI SEARCH FUNCTION
C
C LBOUND :LOWER BOUND
C HBOUND :UPPER BOUND
C INTER - INITIAL INTERVAL
C FINTER : FINAL INTERVAL
C RATIO : RATIO OF INITIAL AND FINAL INTERVALS
C DELTA : DISPLACEMENT OF AN EXPERIMENT FROM THE BOUNDARY,
C EQN.5-44, INITIALLY
C FIBO : FIBONNACCI NUMBERS
C FACT : FIBO(N+1)/FIBO(N-1)
C
DOUBLE PRECISION FUNCTION FIBON(DUMMY)
C

DOUBLE PRECISION RATIO, FIBO(50),

1 LBOUND, HBOUND, INTER, FINTER, DELTA, TESTLB,
2 TESTHB, TLBV, THBV, TEST, FACT, TLB, F

INTEGER EXPCNT, EXPNO, FLAG

LBOUND =0.0
TEST =1.0
HBOUND =1.0
FINTER =0.00001
FACT =1.618034

DETERMINE THE INTERVALS OF THE FIBONNACCI SEARCH

— Q00N

CONTINUE

TLBV =F(TEST)

THBYV = F(HBOUND)

IF (TLBV.GT.THBV) GO TO 20
TLB = TEST

248

TEST= HBOUND
HBOUND = HBOUND * FACT
GO TO 10

CONTINUE

Q00w

DETERMINE BOUNDS AND DELTA FOR FIBONNACCI SEARCH

IF(TEST .NE. 1.) LBOUND = TLB
INTER= HBOUND - LBOUND

DELTA =TEST - LBOUND

TESTLB =TEST

TESTHB = HBOUND - DELTA

IF (TESTLB .LT. TESTHB) GOTO 38

TLB = TESTLB

TESTLB = TESTHB

TESTHB =TLB

DELTA =TESTLB - LBOUND

TSTHB =HBOUND -DELTA
38 CONTINUE

INTER =HBOUND - LBOUND

RATIO = INTER/FINTER

oNoNONe!

DETERMINE THE NUMBER OF EXPERIMENTS REQUIRED TO HAVE
FINTER = 0.00001

FIBO(1) =1
FIBO(2) =1
DO 391 =3,50

FIBO(I) = FIBO(I-1) + FIBO(I-2)
IF (FIBO(I) .LT. RATIO) EXPNO =1 + 1
CONTINUE

Q00 w

START CLOSED BOUND FIBONNACCI SEARCH

DO 40 EXPCNT=1, EXPNO
TLBV= F(TESTLB)
THBV= F(TESTHB)
IF (TLBV.GE.THBV) GO TO 30
LBOUND= TESTLB
INTER= HBOUND - LBOUND
DELTA= INTER - DELTA
TESTLB= TESTHB
TESTHB= HBOUND - DELTA
FLAG =1
GO TO 40
249

30

40

CONTINUE
HBOUND= TESTHB
INTER= HBOUND - LBOUND
DELTA= INTER - DELTA
TESTHB= TESTLB
TESTLB= LBOUND + DELTA
FLAG =0
CONTINUE
IF (FLAG .EQ. 1) FIBON = TESTLB
IF (FLAG .EQ. 0) FIBON = TESTHB
RETURN
END

NGNS

FUNCTION EVALUATION FOR FIBONNACCI SEARCH

10

DOUBLE PRECISION FUNCTION F(K)
DOUBLE PRECISION K, TEST(20), X(20), S(20)
COMMON X, S, NTERM
DO 10 I=1, NTERM
TEST(I)= X(I) - K * S(I)
CONTINUE
F= -FUNCT(TEST)
RETURN
END

NGNS

CALCULATION OF COST FUNCTION

DOUBLE PRECISION FUNCTION FUNCT(X)
DOUBLE PRECISION X(20)
FUNCT=5.0%X(1)*X(1)+2.0%X(2)*X(2)+2.0¥X(3)*X(3)
& +2.0%X(1)*X(2)+2.0¥X(2)*X(3)
& -2.0X(3)*X(1) -6.0¥X(3)
RETURN
END

3k sk st sk s sk sk sk sk sk sk sk sk s s sk sk sk sk sk sk sk sk s sk sk sk sk ke sk sk sk s sk sk sk sk sk sk sk st sk sk sk sk sk sk ke sk sk sk s sk sk sk sk sk sk sk sk sk s sk sk sk ok ke ke sk skoskosk

INPUT DATA :

NO. OF INDEPENDENT VARIABLES, NTERM = 3

STOPPING CRITERION, EPS = 0.0001
STARTING POINTS, X = 0.00 0.00 0.00

RESULTS :
ITERATION COST FUNCTION VALUES OF X K

0 0.000 0.000 0.000 0.000 0.000
1 -4.500 0.000 0.000 1.501 0.250

250

2 -7.500 1.000 -1.000 2.502 0.333
3 -9.000 1.000 -2.002 3.003 0.167

NORMAL TERMINATION OF THE BFGS PROGRAM

Program Description:

This program uses the Broyden, Fletcher, Goldfarb and Shanno (BFGS) algorithm to
minimize an unconstrained multivariable function having as many as twenty variables. The
program consists of a main program, two subroutines and three functions.

The three functions are as follows. The function FUNCT is the equation for the cost
function to be minimized. The function F uses FUNCT for value of the cost function in the line
search. The function FIBON uses the values of F in an open-ended Fibonacci line search. The
two subroutines are SLOPE, which evaluates the partial derivatives using a forward difference
approximation and PRINT, which prints the results of the computations.

The input data are the number of independent variables, starting point for the search and
the stopping criterion, EPS. The program will terminate when the difference between the cost
function values of two successive iterations is less than or equal to EPS, the stopping criteria.

The results are the iteration number, the values of the independent variables, and the cost
function. Shown with the program are the input and output for the problem in Example 5-4.

The main program begins with an echo of the input data. Then it proceeds from iteration
zero, the starting point, to use the BFGS algorithm to generate successive points until the stopping
criterion is met. Initially, the Hessian matrix G is the identity matrix, and the gradient is computed
using a forward difference approximation to the partial derivatives using subroutine SLOPE. The
Fibonacci search function, FIBON, is used to locate the minimum along the gradient line from xo
to x1. Then the stopping criterion is checked, and the Hessian matrix G is updated. The value of
the function is stored in ERROLD for future comparisons. The search direction to the next point
is calculated and stored in the vector S. The value of the parameter of the line in the search
direction, K, is calculated using FIBON to locate the next point. The value of the function at the
new point is calculated and stored in ERR. The values of the iteration counter, the function at the
new point, and the new point are printed using PRINT. The values of the gradient at the current
point are computed and stored in the vector GRAD. The Hessian matrix G is updated, and the
program returns to repeat the calculation until the error criterion is met.

To solve other problems, supply the equation to be minimized in the function FUNCT. It
is used only by the procedure FIBON. If more than 20 variables are needed, then the CONST
SIZE should be changed to the required number. No other modifications are needed. If this
program is to be run in an 8- bit microcomputer, the real variables must be declared double
precision to prevent underflow. Otherwise a division by zero will occur.

251

References

1.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.
20.

Simon, J. D. and H. M. Azma, "Exxon Experience with Large Scale Linear and
Nonlinear Programming Applications", Computers and Chemical Engineering, Vol. 7,
No. 5, p. 605 (1983).

Waren, A. D. and L. S. Lasdon, "The Status of Nonlinear Programming Software",
Operations Research, Vol. 27, No. 3, p. 431 (May-June 1979).

Lasdon, L. S., "A Survey of Nonlinear Programming Algorithms and Software",
Foundations of Computer-Aided Chemical Process Design, Vol. 1, p. 185, American
Institute of Chemical Engineers, New York (1981).

Fletcher, Roger, Practical Methods of Optimization, Vol. I, Unconstrained Optimization,
John Wiley and Sons, Inc., New York (1981).

Fletcher, Roger, Practical Methods of Optimization, Vol. II, Constrained Optimization,
John Wiley and Sons, Inc., New York (1981).

Gill, P. E., E. Murray and M. H. Wright, Practical Optimization, Academic Press, New
York (1981).

McCormick, G. P., Nonlinear Programming: Theory, Algorithms and Applications, John
Wiley and Sons, Inc., New York (1983).

Himmelblau, D. M., Applied Nonlinear Programming, McGraw-Hill Book Company,
New York (1972).

Avriel, Mordecai, Nonlinear Programming: Methods and Analysis, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1976).

Wilde, D. J., Optimum Seeking Methods, Prentice-Hall Inc., Englewood Cliffs, New
Jersey (1964).

Avriel, M., "Nonlinear Programming", Chapter 11 in Mathematical Programming for
Operations Researchers and Computer Scientists, Ed. A. G. Holtzman, Marcel Dekker,
Inc., New York (1981).

Wilde, D. J. and C. S. Beightler, Foundations of Optimization, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey (1967).

Fletcher, Roger, op. cit. p. 57, Vol L.

Churchhouse, R. F., Handbook of Applicable Mathematics, Vol. IIl, Numerical Methods,
John Wiley and Sons, Inc., New York (1981).

Reklaitis, G. V., A. Ravindran and K. M. Ragsdell, Engineering Optimization, Methods
and Applications, John Wiley and Sons, Inc., New York (1983).

Kuester, J. L. and J. H. Mize, Optimization Techniques with Fortran, McGraw-Hill Book
Company, New York (1973).

Smith, C. L., R. W. Pike and P. W. Murrill, Formulation and Optimization of
Mathematical Models, International Textbook Company, Scranton, Pennsylvania (1970).
Griffith, R. E. and R. A. Stewart, " A Nonlinear Programming Technique for the
Optimization of Continuous Processing Systems", Management Science, Vol. 7, p. 379
(1961).

Lasdon, L. S., op. cit., p. 202.

Sandgren, Eric, The Utility of Nonlinear Programming Algorithms, Ph.D. dissertation,
Purdue University, West Lafayette, Indiana (1977).

252

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Colville, A. R., 4 Comparative Study of Nonlinear Programming Codes, IBM New Y ork
Scientific Center Report No. 320 - 2949, IBM Corporation, New York Scientific Center,
410 East 62nd Street, New York, NY 10021 (June 1968).

Lasdon, L. S. and A. D. Waren, "Large Scale Nonlinear Programming," Computers and
Chemical Engineering, Vol. 7, No. 5, p. 595 (1983).

Franklin, Joel, Methods of Mathematical Economies, Linear and Nonlinear
Programming, Fixed Point Theorems, Springer-Verlag Inc., New York (1980).
Vanderplaats, G. N., Numerical Optimization Techniques for Engineering Design with
Applications, McGraw - Hill Book Company, New York (1984).

Hillier, F. S. and G. J. Lieberman, Operations Research, Holden - Day, Inc., San
Francisco (1974).

Walsh, G. R., Methods of Optimization, John Wiley & Sons Inc., New York (1975).
McMillan, Jr., Claude, Mathematical Programming: An Introduction to the Design and
Application of Optimal Decision Machines, John Wiley & Sons, Inc., New York (1970).
Gottfried, B. S. and Joel Weisman, Introduction to Optimization Theory, Prentice - Hall,
Inc., Englewood Cliffs, New Jersey (1973).

Wolfe, P., "Methods of Nonlinear Programming" in Recent Advances in Mathematical
Programming, Ed. R. L. Graves and P. Wolfe, McGraw - Hill Book Company, New
York (1963).

Abadie, J. and J. Carpentier, "Generalization of the Wolfe Reduced Gradient Method to
the Case of Nonlinear Constraints," in Optimization, Ed. R. Fletcher, Academic Press,
London (1969).

Pollack, A. W. and W. D. Lieder, "Linking Process Simulators to a Refinery Linear
Programming Model" in Computer Applications to Chemical Engineering, Ed. R. G.
Squires and G. V. Reklaitis, ACS Symposium Series No. 124, American Chemical
Society, Washington, D. C. (1980).

O'Neil, R. P., M. A. Williard, Bert Wilkins and R. W. Pike, "A Mathematical
Programming Model for Natural Gas Allocation," Operations Research, Vol. 27, No. 5,
p. 857 - 873 (Sept./Oct. 1979).

Sargent, R. W. H., "A Review of Optimization Methods for Nonlinear Problems" in
Computer Applications to Chemical Engineering, Ed. R.G. Squires and G. V. Reklaitis,
ACS Symposium Series No. 124, American Chemical Society, Washington, D.C. (1980).
Cooper, Leon, and David Steinberg, Introduction to Methods of Optimization, W. B.
Saunders Company, Philadelphia (1970).

Adby, P. R. and M. A. H. Dempster, Introduction to Optimization Methods, John Wiley
and Sons, Inc., New York (1974).

Bracken, J. and G. P. McCormick, Selected Applications of Nonlinear Programming, p.
16f, John Wiley and Sons, Inc. New York (1968).

Ray, W. H. and J. Szekely, Process Optimization with Applications in Metallurgy and
Chemical Engineering, John Wiley and Sons, Inc., New York (1973).

April, G. C. and R. W. Pike, "Modeling Complex Chemical Reaction Systems,"
Industrial and Engineering Chemistry, Process Design and Development, Vol. 13, No. 1,
p.1 (January 1974).

253

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Fletcher, R., "Methods Related to Lagrange Functions," Numerical Methods for
Constrained Optimization, Ed. P. E. Gill and W. Murray, Academic Press, New York
(1974).

Doering, F. J. and J. L. Gaddy, "Optimization of the Sulfuric Acid Process with a
Flowsheet Simulator," Computers and Chemical Engineering, Vol. 4, p. 113 (1980).
Martin, D. L. and J. L. Gaddy, "Modeling the Maleic Anhydrate Process," Summer
National Meeting, American Institute of Chemical Engineers, Anaheim (May 20 - 24,
1984).

Jirapongphan, S., J.F. Boston, H. 1. Britt and L. B. Evans, "A Nonlinear Simultaneous
Modular Algorithm for Process Flowsheeting Optimization," American Institute of
Chemical Engineers Annual Meeting, Chicago (November 1980).

Murtagh, B. A. and M. A. Saunders, MINOS 5.0 Users Guide, Technical Report SOL 83
- 20, Systems Optimization Laboratory, Department of Operations Research, Stanford
University (December 1983).

Beigler, L. T. and R. R. Hughes, "Process Optimization: A Comparative Case Study,"
Computers and Chemical Engineering, Vol. 7, No. 5, p.645 (1983).

Locke, M. H. and A. W. Westerberg, "The ASCEND-II System - A Flowsheeting
Application of a Successive Quadratic Programming Methodology," Computers and
Chemical Engineering, Vol. 7, No. 5, p. 615 (1983).

Locke, M. H., A. W. Westerberg, and R. H. Edahl, "Improved Successive Quadratic
Programming Optimization Algorithm for Engineering Design Problems," AIChE
Journal, Vol. 29, No. 5, p.871 (September, 1983).

Palacios-Gomez, F., L. Lasdon and M. Engquist, "Nonlinear Optimization by Successive
Linear Programming," Management Science, Vol. 28, No. 5, p.871 (September 1983).
Chen, H. S. and M. A. Stadtherr, "Enhancements of the Han-Powell Method for
Successive Quadratic Programming," Computers and Chemical Engineering, Vol. §, No.
3/4, p. 229 (1984).

Biegler, L. T. and R. R. Hughes, "Infeasible Path Optimization with Sequential Modular
Simulators," AIChE Journal, Vol. 28, No. 6, p. 994 (November 1982).

Bertsekas, Dimitri P., Constrained Optimization and Lagrange Multiplier Methods,
Academic Press, New York (1982).

Han, S. P., "A Globally Convergent Method for Nonlinear Programming," Journal of
Optimization Theory and Applications, Vol. 22, No. 3, p. 297 (July, 1977).

Han, S. P., "Superlinearly Convergent Variable Metric Algorithms for General Nonlinear
Programming Problems," Mathematical Programming, Vol. 11, p. 263, Noth-Holland
Publishing Company (1976).

Biegler, L. T. and J. E. Cuthrell, "Improved Infeasible Path Optimization for Sequential
Modular Simulators - II: The Optimization Algorithm,” Computers and Chemical
Engineering, Vol. 9, No. 3, p. 257 (1985).

Haftka, R. T. and M. P. Kamat, Elements of Structural Optimization, Martinus Nijhoff
Publisher, Dordrecht, The Netherlands (1985).

Dennis, J. E., and R. B. Schnable, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice - Hall Inc., Englewood Cliffs, New Jersey (1983).
Bazaraa, M. S. and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, John
Wiley and Sons, Inc., New York (1979).

254

57. Powell, M. J. D., "An Efficient Method for Finding the Minimum of a Function of
Several Variables without Calculating Derivatives," The Computer Journal, Vol. 7, p.
155 (1964).

58. Drud, Arne, "CONOPT: A GRG Code for Large Sparce Dynamic Nonlinear
Optimization Problems," Mathematical Programming, Vol. 31, p. 153 (1985).

59. Hadley, G. H., Nonlinear and Dynamic Programming, Addison - Wesley Publishing
Company, Inc., Reading, Mass., p. 191 (1964).

Problems

5-1.19 A Fibonacci search can be used to find the point on a line in space where a function is a
maximum. For the two points (1, —1, 0, 2) and (=5, —1, 3, 1) use a Fibonacci search assuming
perfect resolution and unimodality.

Give the coordinates of the points where the first two experiments would be placed assuming a
total of five measurements will be used. What is the final interval of uncertainty on the
coordinate axis x1?

5-2.10 In the following table eight values of y are given, and y is a function of four
independent variables.

_Xxi X2 X3 X4 Y
0 1 -1 3 5
1 1 -1 3 7
2 1 -1 3 9
-1 2 -1 3 2
0 -1 -1 3 7
0 1 1 3 7
0 1 -1 2
0 2 0 3 5
a. Determine the line of steep ascent passing through the point (0, 1, —1, 3).
b. Determine the contour tangent hyperplane passing through (0, 1, —1, 3).
5-317 Use the method of gradient partan to find the minimum of the following function
starting at (2, 1, 3).
¥ =x12+ 3x22 + 5x3°
5-4. For the following function draw contours on a graph for values of y of 20.0, 40.0,

60.0 and 80.0 in the region 0 <x; < 10 and 0 <x» < 10.
Y =X1X2

255

Starting at point Xo(4, 4) apply Pattern Search to move toward maximum and employ
a step size 8(1/2, 1/2). Make local explorations and accelerations (pattern moves) to
obtain the points through bs.

5-5. In Figure 5-12 a contour map is given for a function with a maximum located in the upper
center. For the four multivariable search techniques, gradient search, sectioning, gradient partan
and pattern search, sketch (precisely) the path these algorithms would take, beginning at the
indicated starting point and going toward the maximum. For pattern search make the step-size
equal to one-half of the width of the grid. The pattern search step size can be cut in half for the
search to continue, if necessary. This will be the resolution limit, however. In addition, make
brief comments about the effectiveness of these four techniques as applied to this function.

Figure 5-12 Contour Map of a Function with a Maximum Located in the Upper Center for Problem 5-5

5-6. On the contour map given in Figure 5-13, sketch (precisely) the path of gradient partan,
Powell's method and pattern search beginning at the starting point shown. For pattern search have
the step size initially equal to the grid shown on the contour map and reduce the step size by one-
half to have the search continue. Reduce the step size by one-half again if necessary, to have

256

pattern search continue. Give a brief discussion of the performance of these methods on this
function.

Figure 5-13 Contour Map for Problem 5-6

5-7. Newton's method is obtained from the Taylor series expansion for y(x), truncating the terms
which are third order and higher, Equation 5-8. Then Equation 5-12 is obtained from the quadratic
approximation, where x is the location of the minimum of the quadratic approximation. Discuss
the iterative procedure that would be used to move to an optimum. To ensure convergence to a

257

minimum (maximum), the value of dy(a)/da always must be negative (positive), where « is the
parameter of the line between points xx and Xi+1 obtained from successive applications of the
algorithm.

X = X; + o (Xk+1 — Xk)

Explain why this restriction is required for convergence to a local minimum (maximum).

5-8. Search for the minimum of the following function using gradient search starting at point
xo(1,1,1).

y =x1> + x2% + x3°

5-9. Develop and use a simplified version of Newton's method (quadratic fit) to search for the
minimum of the function given in Problem 5-8 starting at the same point. Give the Taylor series
expansion for three independent variables truncating third and higher order terms neglecting
interacting (mixed partial derivative) terms for simplicity. Differentiate the truncated Taylor series
equation of with respect to x1, x2 and x3 to compute the optimum of the quadratic approximation,
x1", x2" and x3". Then apply these results to minimize the function of the problem. Compare the
effort required for one iteration of the linear algorithm in Problem 6-8 to one iteration of the
quadratic algorithm.

5-10. In Problem 6-7 a simplified alkylation process with three identical reactors in series is
described. The profit function for each reactor can be represented by an equation with elliptical
contours, and the catalyst degradation function can be represented by a linear equation.

a. If the optimum of the profit function for an individual reactor is at = 10 and C = 95, derive
the profit function to be maximized and the constraint equations to be satisfied for the process.
The profit function for one reactor is given by the following equation.

y =150 — 6(F — 10)> — 24(C — 95)?

The constraint equations have the form y = mx + b, and the parameters m and b can be determined
from Figure 6-32.

b. Form the penalty function for the above problem and discuss how this form will maximize
the profit function and satisfy the constraint equations when a search technique is used to find the
optimum.

5-11. Solve the following optimization problem by successive linear programming starting at Xo
(0, 1/2) using limits of (1, 1). Reduce the limits by one-half if infeasible points are
encountered.

minimize: (x1 =2+ (x2— 1)
258

subjectto: (-1/4)x1—x2+1 >0
x1—2x2+1 =0
5-12. Solve the following optimization problem by successive linear programming starting at point
xo (1, 1) using limits of (1, 1). Reduce the limits by one-half if infeasible points are
encountered.
maximize: dx1 + x2
subject to: x1% +2x? <20.25

x12— x? < 8.25

5-13. Solve the following optimization problem by successive linear programming starting at point
xo (1, 1) using limits of (1, 1). Reduce the limits by one-half if infeasible points are

encountered.
minimize: y=2x12 + 2x1x2 + x22 — 20x1 — 14x2
subject to: xi2 +x2? <25

x12—-x?2 <7

5-14.26 Solve the following problem by successive linear programming starting at point (2, 1) using
limits of (1/2, 1/2). Reduce the limits by one-half if infeasible points are encountered.

maximize: 2x12 — x1x2 + 3x22
subject to: 3x1 +4x2 <12
x12— x2? > 1

5-15.3* Solve the following problem by successive linear programming starting at point xo (1, 1)
using limits of (2, 2). Reduce the limits by one-half if infeasible points are

encountered.
maximize: 3x12 + 2x)2
subject to: x>+ x> <25

9x1 — x2? <27
5-16. The following multivariable optimization problem is shown in Figure 5-7.

259

minimize: —2x1 —4x2+ x2+x2+5

subject to: —x1+2x <2
X1+ x2<4
a. Give the successive linear programming algorithm for this problem in the form of
Equations 6-34. The upper and lower bounds are the same and are equal
to 1.0.
b. For starting point xo = (0,0) apply the algorithm from part a to search for the

optimum by successive linear programming.

5-17. Solve Problem 5-16 by quadratic programming.

5-18.26 Solve the following problem by quadratic programming.
maximize: —2x1> — x2? + 4x1 + 6x2
subject to: x1+3x2<3

5-19.%7 Solve the following problem by quadratic programming.
maximize: 6x1 — 2x12 + 2x1x2 — 2x2°
subject to: x1+x2<2

5-20.%8 Solve the following problem by quadratic programming.
maximize: 9x2 +x12
subject to: x1+2x2=10

5-21. Solve the following problem by quadratic programming.

minimize: 2x1% + 2x1x2 + x2% — 20x1 — 14x2
subject to: x1+3x2<5
2x1 —x2<4

5-22. Solve the following problem by the generalized reduced gradient method starting at the
feasible point xo (1, 1, 19) to find the optimum located at x"(4, 3, 0). Use the optimum
point to determine the appropriate value of the parameter of the reduced gradient line

for one line search to arrive at the optimum.
260

maximize: 3x12 +2x% — x3
subject to: x12+ x2? =25
Ox1 — x22+ x3=27
5-23.!! Solve the following problem by the generalized reduced gradient method. Start at the
point xo = (2, 1, 3, 1) and have x; and x4 be the basic or dependent variables and x>
and x3 the nonbasic or independent variables.
minimize: x1% + 4x?
subject to: x1 +2x2—x3 =1
—x1 +tx2 +xa=0
5-24. Solve the following problem by the generalized reduced gradient method starting at point

X0(2,4,5). Show that the value of the parameters of the reduced gradient line a1 =
—1/20 locates the minimum of the economic model and satisfies the constraints.

minimize : 4x; —x2? +x32— 12
subjectto: —x1> — x2? +20=0
X1 +x3 —7=0

5-25.!7 Find the minimum of the following function starting at the point xo (1, 1, 1). However, this
time experimental error is involved; and the Kiefer-Wolfowitz procedure must be
used, employing ax = 1/k and ¢x = 1/k"* with k=1, 2, ..., 12. Simulate experimental
error by flipping a coin and adding (subtracting) 0.1 from y if the coin turns up heads
(tails).

y=x12+3x2% + 5x3°
5-26. Solve the following problem by successive quadratic programming and the generalized
reduced gradient method, starting at point xo (0, 1/2), and compare these results to the
solution given in Figure 6-8.
minimize: (x1-2)> + (x2-1)?

subjectto: —Yaxi>—x?2+1>0
x1 —2x+1=0

261

