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Chapter 5 

NONLINEAR PROGRAMMING - MULTIVARIABLE OPTIMIZATION 
PROCEDURES 

 
Introduction 
 
 This part of optimization is the most dynamic topic. Applications are varied and appear in 
almost every field.  Over the past three decades, the capability to locate local optima of a nonlinear 
economic model of a plant and to comply with several thousand constraints associated with the 
process models, unit capacities, raw material availabilities and product demands has been 
developed in proprietary codes of major corporations (1). Generally available nonlinear codes for 
large problems have grown from university and government research programs on numerical 
experimentation with algorithms, and high-level modeling language for mathematical 
programming and optimization, such as GAMS are now available.   These modeling languages 
consist of a language compiler and a stable of integrated high-performance solvers tailored for 
complex, large scale modeling applications, and large maintainable models can be adapted quickly 
to new situations.   
 
 The capability to solve optimization problems with increasing numbers of constraints has 
grown with improvements in computer hardware and software.  However, there still is debate 
about which algorithms and/or computer codes are superior; and Lasdon (3) has recommended 
having several codes available which implement some of the more successful methods.  
 
 The effectiveness of a multivariable optimization procedure depends on several, 
interrelated things.  These are the optimization theory, the algorithms to implement the theory, the 
computer program and programming language used for computations with the algorithms, the 
computer to run the program, and the optimization problems being solved.  For example, in the 
area of multivariable, unconstrained search methods; there are several hundred algorithms that 
have been used with varying degrees of success.  They have been programmed in FORTRAN 
mainly, run on various types of computers and applied to a range of problems from simple 
algebraic expressions to plant simulation.  
 
 This chapter describes unconstrained and constrained multivariable search algorithms that 
have been successful in solving industrial optimization problems.  Examples are given to illustrate 
these methods, and references to sources for computer programs are given for the methods.  Also, 
references to recent and classical texts and articles are included for further information.  For 
example, a two-volume set of books by Fletcher (4,5) is a recent comprehensive compilation of 
the mathematical aspects of nonlinear programming methods, as are the equally recent books by 
Gill, Murray and Wright (6), McCormick (7), and Bertsedkas (50).  The books by Reklaitis, et. al. 
(15), Vanderplaat (24), Haftka and Kamat (54) and Dennis and Schnabel (55) describe the theory 
and recent computational practice, and Avriel's book (9) gives a broad mathematical coverage of 
the subject.  Finally, Wilde's book (10), Optimum Seeking Methods, was the first book devoted to 
the subject, and it still contains valuable information in a very readable style.  
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 In general form the nonlinear optimization problem can be stated as:  
 
  Optimize: y(x)         (5-1) 
 
  Subject to: fi(x) = 0 for i = 1, 2, ..., h  
 
    fi(x) > 0       i = h+1, ..., m  
 
There are n independent variables, x = (x1, x2, ... xn), m constraint equations of which h are equality 
constraints.  Also, the values of the xj's can have upper and lower bounds specified.  For this general 
form Avriel (11) points out that there is no unified approach to obtain the optimal solution of the 
nonlinear optimization problem that is comparable to the unifying role of the Simplex Method in 
linear programming.  He states that the Simplex Method can efficiently solve a linear program in 
thousands of variables, but the question of how to minimize an unconstrained nonlinear function 
in more than a few variables is an important one. 
 

There are three classes of procedures for multivariable optimization that are applicable to 
nonlinear economic models with nonlinear constraints.  These are multivariable search methods, 
multivariable elimination procedures, and stochastic methods.  Multivariable search methods have 
been the most important for process optimization and are discussed in detail.  The capabilities and 
limitations of the other three methods are given in a summary form with reference to other sources 
for more complete information.  

 
 Multivariable search methods can be thought of as encompassing the theory and algorithms 
of nonlinear programming along with the associated computational methods.  These procedures 
use algorithms that are based on geometric or logical concepts to move rapidly from a starting 
point away from the optimum to a point near the optimum.  Also, they attempt to satisfy the 
constraints associated with the problem and the Kuhn-Tucker conditions, as they generate 
improved values of the economic model.   
 
 Multivariable elimination procedures are methods that reduce the feasible region 
(hypersurface of the independent variables) by discarding regions that are known not to contain 
the optimum (interval elimination).  Some of these are similar to minimax single variable search 
methods in that they eliminate intervals on each of the independent variables.  However, these 
methods are restricted to certain types of functions, e.g. strongly unimodal functions.  Also, to 
locate the best value of the profit function with these procedures, the reduction in the range of the 
independent variables increases as the number of independent variables increases.  This effect has 
been referred to as the curse of dimensionality, and it has been illustrated by Wilde (10).  The 
single variable minimax interval elimination procedures are not useful in multi-dimensions since 
only line segments are eliminated in those procedures, and the number of lines in a plane is very 
large. 
 
 The more successful stochastic strategies include random search, genetic algorithms and 
simulated annealing.		Random search is a stochastic method that places experiments randomly in 
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the feasible region after it has been divided into a grid of discrete points.  Knowing the number 
and location of the grid points, a set of experiments is placed randomly.  Then it can be determined 
with a certain probability that one of these points has a value of the profit function that is in a 
specified best fraction (top x%).  Unimodality is not required, and the number of independent 
variables is not directly a factor.  In adaptive or creeping random search, experiments are placed 
randomly in a selected section of the feasible region, and a best value is located.  Then another 
section of the feasible region is placed around this best value, and random experiments are placed 
again.  This procedure is repeated until a stopping criterion is met.  In essence, random search is 
used as a multivariable search method.  
 
 Stochastic approximation procedures are methods that apply to economic models that 
contain random error, e.g. the plant instead of a computer simulation of the plant.  These techniques 
are similar to multivariable search methods, but they move slowly to avoid being confounded by 
the random error in the values of the economic model.  
 
 These three methods are described such that they can be applied to industrial problems.  
The most important and widely used multivariable search methods are given first, and then the 
other three procedures are discussed.  
 
Multivariable Search Methods Overview 
  
 Wilde (10) has proposed a strategy for multivariable search methods that contains some 
important ideas.  This strategy has an opening gambit, a middle game and an end game that is 
analogous to the strategy of chess.  In the opening gambit a starting point is selected.  Then the 
middle game involves moving from this starting point to a point near the optimum as rapidly as 
possible.  In the end game a quadratic fit to the economic model is performed to avoid stopping at 
a saddle point or sharp ridge.  
 
 Generally, selecting a starting point is not a problem for the current design or plant 
operating conditions are usually known.  If they are not available, then midpoints between the 
upper and lower limits on the independent variables can be used, and Wilde (10) has suggested 
others such as the centroid and the minimax.  
 
 In the middle game a multivariable search method is used that moves rapidly from the 
starting point to a point that appears to be an optimum.  Only enough local explorations are 
performed at each step to obtain information useful to locate future experiments and to keep the 
method moving rapidly toward the optimum.  The objective is to attain a series of improved values 
of the economic model with a minimum of computational effort.  
 
 The end game takes over once the middle game procedure has located what appears to be 
an optimum.  A quadratic fit to the economic model at this best point is performed to determine if 
it is an optimum rather than a saddle point or a ridge.  The strategy has the middle game continue 
if an optimum is not located or stops if one is found based on the quadratic approximation.  
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 With these ideas in mind, multivariable search methods will be described that are middle 
game procedures applicable to unconstrained and constrained problems.  One of the more 
frequently encountered unconstrained optimization problems is that of a nonlinear least-squares 
fit of a curve to experimental data.  However, industrial optimization problems are constrained 
ones, almost without exception.  Moreover, it will be seen that some constrained methods convert 
the problem into an unconstrained one, and then an unconstrained procedure is employed.  Also, 
some of the more effective middle game procedures develop the information for the quadratic fit 
of the end game as they proceed from the starting point.   
 
 There are several hundred unconstrained multivariable search methods, but most of them 
are variations on a few concepts.  These concepts can be used to classify the methods.  Many 
techniques may be called geometric methods for they use a local, geometric property to find a 
direction having an improved value of the economic model.  Typically, derivative measurements 
are required.  Two examples are the direction of steepest ascent (gradient search) and quadratic fit 
to the profit function (Newton's method).  Other techniques can be called logical methods for they 
use an algorithm based on a logical concept to find an improved direction of the profit function.  
Two examples are pattern search and flexible polyhedron search.  Typically, derivative 
measurements are not required; and these types of procedures also have been called function 
comparison methods (6).  However, two methods that would not fit into these two categories 
readily are extensions of linear and quadratic programming.  Here, linear programming, for 
example, is applied iteratively to a linearized version of the nonlinear constrained problem to move 
toward the optimum from a starting point.  The methods are called successive, or sequential, linear 
programming and successive, or sequential, quadratic programming.  
 
 Another equally valid way to classify unconstrained methods has been given by Gill, 
Murray and Wright (6).  These categories are Newton, quasi-Newton and conjugate gradient types, 
each with and without first or second derivatives, and functional comparison methods.  Also, some 
of the quasi-Newton methods are called variable metric methods, and some of the conjugate 
gradient methods are called conjugate direction methods.  They are all geometric methods, except 
for the functional comparison methods that are logical methods.  
 
 There are essentially six types of procedures to solve constrained nonlinear optimization 
problems.  Four of these methods convert the constrained problem into an unconstrained one, and 
then an unconstrained search procedure is applied.  These four types are penalty or barrier 
functions methods, the augmented Lagrange functions, generalized reduced gradients and feasible 
directions (or projections) sometimes called methods of restricted movement.  The other two are 
the previously mentioned procedures of successive (or sequential) linear and quadratic 
programming.  
 
Unconstrained Multivariable Search Methods 
 
 In this section on unconstrained multivariable search methods, several of the most effective 
and widely used methods are described.  First, the quasi-Newton methods are given which have 
proved to be the most effective and more elaborate of the procedures.  Then conjugate gradient 
and conjugate direction methods are illustrated with two examples.  Finally, the popular function 
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comparison procedure, pattern search, is presented, and assessments of these methods are 
presented as related to problems with constraints.  
 
 Before discussing the specifics of the methods, it is necessary to describe the desirable 
features of an algorithm.  As mentioned previously, the algorithm should generate a sequence of 
values of xk that move rapidly from the starting point x0 to the neighborhood of the optimum x*.  
Then the iterates xk should converge to x* and terminate when a convergence test is satisfied.  
Therefore, an important theoretical result for an algorithm would be a theorem that proves the 
sequence of values xk generated by the algorithm converges to a local optimum.  For example, the 
following theorem from Walsh (26) provides sufficient conditions for convergence of the method 
of steepest ascent (gradient search).  

 
If the limit of the sequence {xk} of xk + 1 = xk + αÑy(xk,) is x*  for all x in a suitable neighborhood 
of x*, then y(x)  has a local minimum at x = x* . 
 
The proof of this theorem is by contradiction.  
 
 As will be seen, the method of steepest ascent (gradient search) is not an effective method 
even though it will converge to an optimum eventually.  The algorithm tends to zigzag, and the 
rate of convergence is significantly slower than other algorithms.  Consequently, the rate (or order) 
of convergence of an algorithm is another important theoretical property.  The rate of convergence 
of a sequence xk for an algorithm as described by Fletcher (4) is in terms of the norm of the 
difference of a point in the sequence xk and the optimum x* i.e., ║xk  - x*║.   
If  ║xk+1 -  x*║/║xk - x*║→ a, then the rate of convergence is said to be linear or first-order if a 
> 0.  It is said to be superlinear if a = 0.  For an algorithm, it is desirable to have the value of a as 
small as possible.  For some algorithms it is possible to show that║xk+1 - x*║2/║xk  - x*║2→ a, 
and for this case the rate of convergence is said to be quadratic or second-order.  For the method 
of steepest ascent Fletcher (4) states that the rate of convergence is a slow rate of linear 
convergence that depends on the largest and smallest eigenvalues of the Hessian matrix.  
 
 Another criterion often used to compare algorithms is their ability to locate the optimum 
of quadratic functions.  This is called quadratic termination.  The justification for using this 
criterion for comparison is that near an optimum the function can be "adequately approximated by 
a quadratic form," according to Bazaraa and Shetty (56).  They claim that an algorithm that does 
not perform well in minimizing a quadratic function probably will not do well for a general 
nonlinear function, especially near the optimum. 
 
 There are several caveats about relying on theoretical results in judging algorithms.  One 
is that the existence of convergence and rate of convergence results for any algorithm does not a 
guarantee good performance in practice according to Fletcher (4).  One reason is that these 
theoretical results do not account for computer round-off error that may be crucial. Both numerical 
experimentation with a variety of test functions and convergence, and rate of convergence proofs 
are required to give a reliable indication of good performance.  Also, as discussed by Gill, et al. 
(6) conditions for achieving the theoretical rate of convergence may be rare since an infinite 
sequence does not exist on a computer.  Moreover, the absence of a theorem on the rate of 
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convergence of an algorithm may be as much a measure of the difficulty of the proof as the 
inadequacy of the algorithm according to Gill, et al.(6).  
 
 Quasi-Newton Methods:  These methods begin the search along a gradient line and use 
gradient information to build a quadratic fit to the economic model (profit function).  
Consequently, to understand these methods it is helpful to discuss the gradient search algorithm 
and Newton's method as background for the extension to the quasi-Newton algorithms.  All of the 
algorithms involve a line search given by the following equation.  
  
    xk+1=xk - α Hk y(xk)         (5-2) 
 
For gradient search Hk is I, the unit matrix; and α is the parameter of the gradient line.  For 
Newton's method Hk is the inverse of the Hessian matrix, H-1; and α is one.  For quasi-Newton 
methods Hk is a series of matrices beginning with the unit matrix, I, and ending with the inverse 
of the Hessian matrix, H-1.  The quasi-Newton algorithm that employs the BFGS (Broyden, 
Fletcher, Golfarb, Shanno) formula for up-dating the Hessian matrix is considered to be the most 
effective of the unconstrained multivariable search techniques according to Fletcher (5).  This 
formula is an extension of the DFP (Davidon, Fletcher, Powell) formula.  
 
 Gradient Search: Gradient search or the method of steepest ascent was presented in 
Chapter 2 as an example of the application of the method of Lagrange multipliers.  However, let 
us consider briefly another approach to obtain this result that should give added insight to the 
method.  First, the profit function, y(x), is expanded around point xk in a Taylor series with only 
first order terms as:  
 

      (5-3) 

 
In matrix notation, the above equation has the following form: 
 
       (5-4) 
 
 Then to maximize y(x), the largest value of  is to be used.  When the largest 
value of  is determined, it has to be in the form of an equation that gives the way 
to change the individual xj's to move in the direction of steepest ascent.  This term can be written 
in vector notation as the dot product of two vectors.  
 
     (5-5) 
  
 The magnitude of the gradient of y(xk) at point xk, , is known or can be measured 
at xk; and the magnitude of the vector (x - xk) is to be determined to maximize the dot product of 
the two vectors.  In examining Equation 5-5, the largest value of the dot product is with the value 

∇

maximize: y(x) = y(xk )+ ∂y(xk )
∂x j

(x j − x jk )
j=1

n

∑

maximize: y(x) = y(xk )+∇T y(xk )(x − xk )

∇y(xk )
T (x − xk )

∇T y(xk )(x − xk )

∇y(xk )
T (x − xk ) =∇y(xk )•(x − xk ) = ∇y(xk ) (x − xk ) cosθ

∇y(xk )
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of θ = 0 where cos (0) = 1.  Consequently, the two vectors  and (x—xk) are collinear and 
are proportional.  This is given by the following equation.  
 
       (5-6)
  
where α is the proportionality constant and is also the parameter of the gradient line.  Therefore, 
the gradient line, Equation 5-6 can be written as:  

   
         (5-7)
  
 
 The plus sign in Equation 5-7 indicates the direction of steepest ascent, and using a negative 
sign in the equation would give the direction of steepest descent.  However, these directions are 
actually steep ascent (descent) rather than steepest ascent (descent).  Only if the optimization 
problem is scaled such that a unit change in each of the independent variables produces the same 
change in the profit function will the gradient move in the direction of steepest ascent.  The 
procedures for scaling have been described in detail by Wilde (10) and Wilde and Beightler (12), 
and scaling is a problem encountered with all search methods.  
 
 Comparing Equation 5-7 to Equation 5-2, it is seen that , the identity matrix.  An 
open-ended line search on α is required to locate the optimum along the gradient line. 
 
 The following short example illustrates the gradient method for a simple function with 
ellipsoidal contours.  The zigzag behavior is observed as the algorithm moves from the starting 
point at (2, -2,1) to the minimum at (0,0,0) of a function that is the sum of squares.   
 
Example 5–1 
 
Search for the minimum of the following function using gradient search starting  
at point x0 = (2,-2, 1).  
 
   y = 2x12 + x22 + 3x32  
 
The gradient line, Equation 6-7, for point x0 is:  
 
    
 
and the three components of this equation are:  
 
   x1 = x10 + α ∂y(x0)  
           ∂x1 
      
   x2 = x20 + α ∂y(x0)  
           ∂x2 

∇y(xk )

x − xk =α ∇y(xk )

x = xk +α ∇y(xk )

ΔHk = I

x = x0 +α ∇y(x0 )
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   x3 = x30 + α ∂y(x0)  
           ∂x3 
 
Evaluating the partial derivatives gives:  
 
  
∂y = 4x1 ∂y(x0) = 8 ∂y = 2x2 ∂y(x0) = -4  ∂y = 6x3 ∂y(x0) = 6  
∂x1  ∂x1  ∂x2  ∂x2   ∂x3  ∂x3  
 
The gradient line is:  
 
   x1 = 2 + 8α   
 
   x2 = -2 - 4α  
 
   x3 = 1 + 6α  
 
Using the gradient line equations, y(x1,x2,x3) is converted into y(α) for an exact line search:  
  

  y = 2(2 + 8α)2 + (-2 - 4α)2 + 3(1 + 6α)2  
and   

  dy = 32(2 + 8α) - 8(-2 - 4α) + 36(1 + 6α) = 0 → α* = -0.23016   
   dα  
 
Computing point x1 using α* = -0.23016 gives:  
     
   x1 = 2 + 8(-0.23016) = 0.15872  
    
   x2 = -2 - 4(-0.23016) = 1.0794  
 
   x3 = 1 + 6(-0.23016) = -0.38096  
 
Continuing, the partial derivatives are evaluated at x1 to give:   
 
 ∂y (x1) = 4(0.15892) = 0.63488  ∂y (x1) = 2(1.0794) = 2.1588  
 ∂x1      ∂x2  
 
 ∂y (x1) = 6(-0.38096) = -2.2858  
 ∂x3  
 
The gradient line at x1 is:  
 
   x1 = 0.15872 + 0.63688α  
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   x2 = 1.0794 + 2.1588α  
 
   x3 = -0.38096 - 2.2858α  
 
The value of α which minimizes y(α) along the gradient line from x1 is computed as was done 
previously, and the result is α* = -0.2433.  Using this value of α the point x2 is computed as 
(0.004524, 0.5542, 0.1752).  Then, the search is continued along the gradient line from x2 to x3.  
These results and those from subsequent application of the algorithm are tabulated below along 
with the previous results. 
 
     Iteration   x1  x2  x3    α  y(x)   
 0   2  -2   1          15.0 
         -0.23016  
 1   0.1587 1.0794  -0.3810   1.6510 
         -0.2433  
 2   0.004254 0.5542   0.1752    0.3993  
         -0.2568  
 3  -1.2x10-4 0.2696  -0.0947   0.09959  
         -0.2436 
 4   3.4x10-6 0.1383   0.04371   0.02486  
         -0.2568  
 5   0  0.06727 -0.02365   0.006203  
         -0.2435  
 6   0  0.03452  0.01090   0.001548  
         -0.2570   
 7   0  1.68x10-3 -5.90x10-3   2.8x10-4  
         -0.4999  
 8   0  3.0x10-6  1.0x10-6   1.2x10-11  
 
A stopping criterion, having the independent variables be less than or equal to 1x10-3, was used. 
Also, a criterion on the value of y(x) could have been used.  
 
 Notice that the value of the parameter of the gradient line α is always negative.  This 
indicates the algorithm is moving in the direction of steepest descent.  As above results show, 
gradient search tends to take a zigzag path to the minimum of the function.  This is typical of the 
performance of this algorithm.  
 
 Newton’s Method:  In the development of Newton's method, the Taylor series expansion 
of y(x) about xk includes the second order terms as shown below.  
  

  (5-8) 

 
A more convenient way to write this equation is in matrix notation: 

optimize: y(x) = y(xk )+ ∂y(xk )
∂x j

(x j − x jk )
j=1

n

∑ + 1
2

∂2y(xk )
∂xi∂x jj=1

n

∑
i=1

n

∑ (xi − xik )(x j − x jk )



	 177	

	
 
    (5-9)  
 
where H is the Hessian matrix, the matrix of second partial derivatives evaluated at the point xk, 
and (x - xk)T is the row vector which is the transpose of the column vector of the difference 
between the vector of independent variables x and the point xk used for the Taylor series 
expansion. 
 
 The algorithm is developed by locating the stationary point of Equation 5-8 or 5-9 by 
setting the first partial derivatives with respect to x1, x2, ..., xn equal to zero.  For Equation 5-8 the 
result is:  

       (5-10) 

 
which when written in terms of the Hessian matrix is:  
 
   Ñy(xk) + H(x - xk) = 0           (5-11) 

 
Then solving for x, the optimum of the quadratic approximation, the following equation is obtained 
which is the Newton's method algorithm.  
 
   x = xk  - H-1 Ñy(xk)         (5-12) 
 
 Comparing Equation 5-12 to Equation 5-2, it is seen that α = -1 and Hk = H-1, the inverse 
of the Hessian matrix.  Also, a line search is not required for this method since α = -1.  However, 
more computational effort is required for one iteration of this algorithm than for one iteration of 
gradient search since the inverse of the Hessian matrix has to be evaluated in addition to the 
gradient vector.  The same quadratic function of the gradient search algorithm example is used to 
illustrate Newton's method in the following example, and it shows the additional computations 
required.  
 

optimize: y(x) = y(xk )+∇T y(xk )(x − xk )+ 1
2 (x − xk )T H(x − xk )

∂y
∂x1

=
∂y(xk )
∂x1

+
∂2y(xk )
∂x1∂x jj=1

n

∑ (x j − x jk ) = 0

!

∂y
∂xn

=
∂y(xk )
∂xn

+
∂2y(xk )
∂xn∂x jj=1

n

∑ (x j − x jk ) = 0
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Example 5-2 
 
Search for the minimum of the function from Example 6-1 using Newton's method starting at 
point x0 = (2, -2, 1).  
 
     y = 2x12 + x22 + 3x32  
 
From the previous example the gradient is:  

 
     Ñy(x0)T = (8, -4, 6)               

 
The Hessian matrix formed from the second partial derivatives evaluated at x0 and its inverse is:  
 

    

   
The algorithm is given by Equation 5-12, and for this example is:  

 

 

 
The minimum of the quadratic function is located with one application of the algorithm.  
  
 In Newton's method, if xk is not close to x*, it may happen that H-1 is not positive definite; 
and then the method may fail to converge in this case (26).  However, if the starting point xo is 
sufficiently close to a local optimum x*, the rate of convergence is second order as given by the 
following theorem from Fletcher (4).  
 
If xk is sufficiently close to x* for some k, and if H* is positive definite, then Newton's method is 
well defined for all k and converges at a second-order rate.  

 
The proof of the theorem has xk in the neighborhood of x* and uses induction.  
 
 Newton's method has the property of quadratic termination as demonstrated by the example 
above.  It arrives at the optimum of a quadratic function in a finite number of steps, one.  
 
 However, for nonlinear functions generally Newton's method moves methodically toward 
the optimum; but the computational effort required to compute the inverse of the Hessian matrix 
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at each iteration usually is excessive compared to other methods.  Consequently, it is considered 
to be an inefficient middle game procedure for most problems.  
 
 Quasi-Newton Methods: To overcome these difficulties, quasi-Newton methods were 
developed which use the algorithm given by Equation 5-2.  They begin with a search along the 
gradient line, and only gradient measurements are required for Hk in subsequent applications of 
the algorithm given by Equation 6-2.  As the algorithm proceeds, a quadratic approximation to the 
profit function is developed only from the gradient measurements; and for a quadratic function of 
n independent variables, the optimum is reached after n applications of the algorithm.  
 
 Davidon developed the concept in 1959 and Fletcher and Powell in 1963 extended the 
methodology.  As discussed by Fletcher (4) there have been a number of other contributors to this 
area, also.  The DFP (Davidon, Fletcher, Powell) algorithm has become the best known of the 
quasi-Newton (variable metric or large-step gradient) algorithms.  Some of its properties are 
superlinear rate of convergence on general functions, and quadratic termination using exact line 
searches on quadratic functions (4).  
 
 A number of variations of the functional form of the matrix Hk of Equation 5-2 with the 
properties described above have been developed, and some of these have been tabulated by 
Himmelblau (8).  However, as previously stated, the BFGS algorithm that was developed in 1970 
is preferable to the others; and this is currently well accepted according to Fletcher (4).  The 
following paragraphs will describe the DFP and BFGS algorithms and illustrate each with an 
example.  Convergence proofs and related information are given by Fletcher (4) and others (6, 7, 
8, 9).  
 
The DFP algorithm has the following form of Equation 5-2 for minimizing the function y(x).  
 
 xk+1= xk  - αk +1 Hk s y(xk)  (5-13) 
 
where αk+1 is the parameter of the line from xk to locate xk+1 at the optimum, and Hk is given by 
the following equation (12).  
 
    Hk = Hk-1 + Ak + Bk   (5-14)  
 
The matrices Ak and Bk are given by the following equations.  
 

              (5-15) 

 

       (5-16) 

 

Αk =
(xk − xk−1)(xk − xk−1)

T

(xk − xk−1)
T (∇y(xk −∇y(xk−1))

Bk =
−Hk−1 ∇y(xk )−∇y(xk−1)[ ] ∇y(xk )−∇y(xk−1)[ ]T Hk−1

T

∇y(xk )−∇y(xk−1)[ ]T Hk−1 ∇y(xk )−∇y(xk−1)[ ]
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 The algorithm begins with a search along the gradient line from the starting point x0 as 
given by the following equation obtained from Equation 5-13 with k = 0.  

 
    x1 = x0 — αH0sy(x0)    (5-17) 

 
where H0 = I is the unit matrix.  This equation is the same as Equation 5-7 for the gradient line.   
 
 The algorithm continues using Equation 5-13 with updates using Equations 5-15 and 5-16 
until a stopping criterion is met.  However, for a quadratic function with n independent variables 
the method converges to the optimum after n iterations (quadratic termination) if exact line 
searches are used. 
 
 The matrices Ak and Bk have been constructed so their sums would have the specific 
properties shown below (12).  
 

         (5-18) 

     

    	 	 	 	 	 			 	(5-19) 

 
 
The sum of the n matrices Ak generates the inverse of the Hessian matrix H-1 to have Equation 5-
13 be the same as Newton's method, Equation 5-12, at the end of n iterations.  The sum of the 
matrices Bk generates the negative of the unit matrix I at the end of n iterations to cancel the first 
step of the algorithm when I was used for H0 in Equation 5-17.  
 
 The development of the algorithm and the proofs for the rate of convergence and quadratic 
termination are given by Fletcher (4).  Also, the procedure is applicable to and effective on 
nonlinear functions.  According to Fletcher (4) for general functions it preserves positive definite 
Hk matrices, and thus the descent property holds.  Also, it has a superlinear rate of convergence, 
and it converges to the global minimum of strictly convex functions if exact line searches are used.  
  
 The following example illustrates the use of the DFP algorithm for a quadratic function 
with three independent variables.  Consequently, the optimum is reached with three applications 
of the algorithm.  
 
Example 5-3 (14) 
  
Determine the minimum of the following function using the DFP algorithm starting  
at x0T = (0,0,0).  
 

minimize:  5x12 + 2x22 + 2x32 + 2x1x2 + 2x2x3 - 2x1x3 - 6x3  

Ak = H
−1

k=0

n

∑

Bk = −H0 = −I
k=0

n

∑
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Performing the appropriate partial differentiation, the gradient vector sy(x) and the Hessian 
matrix are:  
 

sy(x) =     

 
Using Equation 6-17 to start the algorithm gives:  
 

 

 
The optimal value of α1 was determined by an exact line search with Equation 6-17 using x1 = 0, 
x2 = 0, x3 = 6α1 as follows.  
 
   y(α1) = 2(6α1)2 - 6(6α1) = 72α12 - 36α1  
 
   dy /d α1= 144α1  - 36 = 0  →  α1  = ¼      
 
The value of x1 is computed by substituting for α1 in the previous equation.  
 
   x1T = (0, 0, 3/2)  sy(x1) T = (-3, 3, 0) sy(x0) T = (0, 0, -6)  
 
The algorithm continues using Equations 5-13 and 5-14 for k=1.  
 
    x2 = x1 - α2 H1 sy(x1)  
 
or   

 

 
where α2 is determined by an exact line search as shown below. 
 
    H1 = H0 + A1 + B1 
 
and A1 and B1 are given by Equations 5-15 and 5-16.  
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The optimal value of α2 is determined by an exact line search as follows.  
 
 y(α2) = 12α22 - 12α2 + 9/2  dy / dα2 = 24α2 - 12 = 0 - α2 = ½  
        
The value of x2 is computed by substituting for α2 in the previous equation.  
 
  x2T = (1, -1, 5/2)   sy(x2)T = (3, 3, 0)  
 
The computation of x3 uses Equations 5-13 and 5-14 as follows:  
 

x3 = x2 - α3 H2 sy(x2)  
 
and  
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The optimal value of α3 was determined by an exact line search as follows: 
 

y(α3) = 5 + 2(1 + 12α3/5)2 + 2(5/2 + 6α3/5)2 - 2(1 + 12α3/5)  
   -2(1 + 12α3/5)(5/2 + 6α3/5) - 2(5/2 + 6α3/5) - 6(5/2 + 6α3/5)  
 
Setting dy(α3)/dα3 = 0 and solving for α3 gives α3 = 5/12 and x3T = (1, -2, 3) which is the value of 
the function at the minimum.  
 
 In the preceding example exact line searches were used to have the DFP algorithm proceed 
to the optimum.  However, in optimization problems encountered in industrial practice exact line 
searches are not possible; and numerical single variable search methods must be used, ones such 
as golden section search or the quadratic method.  However, the previously mentioned BFGS 
method will converge to the optimum of a convex function even when inexact line searches are 
used.  Also, this global convergence property has not been demonstrated for other algorithms like 
the DFP algorithm according to Fletcher (4).  Consequently, this may be part of the reason that 
the BFGS algorithm has demonstrated generally more satisfactory performance than other methods 
in numerical experiments, even though it is a more elaborate formula.  The BFGS matrix up-date 
formula comparable to Equations (5-14), (5-15) and (5-16) as given by Fletcher (4) is:  
 

    (5-20) 
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 This equation is used in place of Equation 6-14 in the algorithm given by Equation 5-13.  
The procedure is the same in that a search along the gradient line from starting point x0 is conducted 
initially according to Equation 5-17.  Then the Hessian matrix is updated using Equation 5-20, and 
for quadratic functions the method arrives at the minimum after n iterations.  The following 
example illustrates the procedure for the BFGS algorithm using the function of Example 5-3.  
 
Example 5-4 (14)  
 
Determine the minimum of the following function using the BFGS algorithm starting at x0 = 
(0,0,0).  
 

Minimize:  5x12 + 2x22 + 2x32 + 2x1x2 + 2x2x3 - 2x1x3 - 6x3  
 
The first application of the algorithm is the same as Example 5-3 that is a search along the 
gradient line through x0 = (0,0,0). These results were:  
 
  x1T = (0, 0, 3/2)  sy(x1)T = (-3, 3, 0)  
 
  x0T = (0, 0, 0)   sy(x0)T = (0, 0, -6)  
 
The algorithm continues using Equations 5-13 and 5-20 for k=1.  
 
   x2 = x1 - α2 H1 sy(x1)  
or                                             
 

  

 
where 
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The optimal value of α2 is determined by an exact line search using x1 = 3α2, x2 = -3α2, x3 = 3/2 + 
3α2 in the function being minimized to give:  
 
  y = 27α22 - 18α2 + 4½  dy /dα2 = 54α2 - 18 = 0 → α2 = 1/3  
       
The value for x2 is computed by substituting for α2 in the previous equation. 
  
   x2T = (1, -1, 5/2)  sTy(x2)= (3, 3, 0)  
 
The computation of x3 repeats the application of the algorithm as follows:  
 
     x3 = x2 - α3 H2 sy(x2)  
 
or  
 

  

 
where 
  δ1T = (1,-1,1)    γ1T = (6,0,0)   δ1T γ1 = 6    γ1T H1 γ1 = 36  
 

 

 
The optimal value of α3 is determined by an exact line search using x13 = 1, x23 = -1-6α3, x33 = 5/2 
+ 3α2 in the function being minimized to give y(α3).  The value of α3 = 1/6 is determined as 
previously by setting dy(α3)/dα3 = 0, and the optimal value of x3T = (1,-2,3) is computed which is 
the value of the function at the minimum.  
  
 A program for the BFGS method is given in Table 5-4 at the end of this chapter.  It employs 
the Fibonacci search program described in Chapter 5 for the line searches.  This method and the 
program are applicable to functions that are not quadratic, also.  However, the property of quadratic 
termination to the optimum in a predetermined number of steps is applicable to quadratic functions 
only; and a stopping criterion has to be specified for general nonlinear functions.  In this program 
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the function to be minimized and the stopping criterion, EPS, are to be supplied by the user; and 
the program terminates when the magnitude of successive values of the profit function are less 
than the value of the stopping criterion.  The solution to the problem of Example 6-4 is given to 
illustrate the use of the program.  
 
 Conjugate Gradient and Direction Methods:  The distinguishing feature of these 
methods is that they have the quadratic termination property.  The conjugate direction methods do 
not require derivative measurements, and the conjugate gradient methods only require gradient 
measurements.  These procedures have been effective on a number of optimization problems, and 
they have been summarized by Fletcher (4) and others (6, 7, 8, 9, 15).  The conjugate gradient and 
direction algorithms can locate the optimum of a quadratic function by searching only once along 
conjugate directions if exact line searches are used (quadratic termination), and all methods rely 
on the theorem given below.  They differ in the way the conjugate directions are generated, and 
the objective has been to develop efficient methods for general functions (4).  Two methods that 
have been consistently better performers than the others will be described, Powell's method for 
conjugate directions and gradient partan for conjugate gradients.  
 The idea for these methods is based on the fact that the optimum of a function that is 
separable can be found by optimizing separately each component.  A quadratic function can be 
converted into a separable function, a sum of perfect squares (15), using a linear transformation; 
and the optimum can be found by a single variable search on each of the n transformed independent 
variables.  The directions from the transformations are called conjugate directions.  
 
 A quadratic function to be optimized can have the following form.  
 
    y(x) = a + bT x + xT Hx (5-21) 
 
Then using of the properties of a quadratic function, e.g. H is a positive definite, symmetric matrix, 
it can be shown that a set of linearly independent vectors s1, s2, ..., sn; are mutually conjugate with 
respect to H if:  
 
     siT H sj = 0    (5-22) 
 
Then using this property, sets of conjugate search directions can be constructed that minimize the 
quadratic function, Equation 5-21, as illustrated by Himmelblau (8).  The theorem on which 
these methods rely, as given by Fletcher (4), is:  
 
A conjugate direction method terminates for a quadratic function in at most n exact line 
searches, and each xi+1 is the minimizer in the subspace generated by xi and the directions 
 s1, s2, ... , si (that is the set of points ). 

 
The proof uses the stationary point necessary conditions, Equation 5-22 and the fact that mutually 
conjugate vectors are linearly independent (4, 9, 26, 57).   However, the proof does not give insight 
into the means of constructing conjugate directions (4). 
 

x | x = x1 + α j s j∀α jj=1

i
∑{ }
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 The notion of conjugate directions is a generalization of orthogonal directions where H = 
I in Equation 5-22 according to Avriel (9); and algorithms, such as Powell's method, initially 
search along orthogonal coordinate axes.  Also, the DFP and the BFGS methods are conjugate 
direction methods when exact line searches are used (7).  
 
 Searching along conjugate directions can be represented by the following equation. 
 

          (5-23)  

 
where αi is the parameter of the line in the conjugate directions (the orthogonal coordinate axes 
initially in Powell's method), and xi is the vector that gives the conjugate directions (a coordinate 
axis e.g. xi = (0, ... , 0, xi, 0, ...0) in Powell's method).  For a given direction of search, xi, the value 
of αi is located to give the optimum of y(xi) along the line of search.  The function to be optimized 
can be written as: 

         (5-24)  

 
Then to locate the optimum, x*, an exact line search is conducted on each of the αi's individually.  
The optimum of y(x) is then determined by exact line searches in each of the conjugate directions.  
Further details are given by Fletcher (4), Avriel (9), and Powell (57) about the theory for these 
methods.  
 
 The two methods most frequently associated with conjugate direction are illustrated in 
Figure 5-1.  These are Powell's method (57) and steep ascent partan (12).  In Powell's method, the 
conjugate directions are the orthogonal coordinate axes initially, and in steep ascent partan the 
conjugate directions are the gradient lines.  Also, both procedures employ an acceleration step.  In 
the following paragraphs these two methods are discussed in more detail for n independent 
variables and are illustrated with an example.  
 
 In Powell's algorithm (9) the procedure begins at a starting point x0, and each application 
of the algorithm consists of (n+2) successive exact line searches.  The first (n + 1) line searches 
are along each of the n coordinate axes. The (n+2)nd line search goes from the best point obtained 
from the first line search through the best point obtained at the end of the (n+1) line searches. If 
the function is quadratic, this will locate the optimum.  If it is not, then the search is continued 
with one of the first n direction replaced by the (n + 1)th direction; and the procedure is repeated 
until a stopping criterion is met. This is illustrated in Figure 5-1(a) for two independent variables.   
   
 The basic procedure for an iteration as given by Powell (57) is as follows for a function of 
n independent variables starting at initial point xI with the conjugate direction s1, s2, ..., sn chosen 
as the coordinate axes.  
 
   Powell's Method for a General Function (57) 

x = x0 + αixi
i=1

n

∑

y(x*) = y(x0 + αixi
i=1

n

∑ )
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0. Calculate α1 so that y(xI + αI sn) is a minimum, and define x0 = xI + α1 sn.  
1. For j = 1, 2, ..., n:  
 Calculate αj so that y(xj-1 + αj sj) is a minimum.  
  Define xj = xj-1 + αj sj.  
 Replace sj with sj+1.  
2. Replace sn with xn – x0.  
3. Choose α so that y[x0 + α(xn – x0)] is a minimum, and replace x0 with x0 + α(xn – x0).  
4. Repeat steps 1-3 until a stopping criterion is met.  
 

For a quadratic function the method will arrive at the minimum on completing Step 3.  For 
a general function Steps 1-3 are repeated until a stopping criterion is satisfied.  Step 0 is required 
to start the method by having x0, the point beginning the iteration steps 1-3, be a minimum point 
on the contour tangent line sn.  The following example illustrates the above procedure for a 
quadratic function with two independent variables. 
 
Example 5-5 (8) 
 
Determine the minimum of the following function using Powell's method starting at initial point 
xI = (2,2).  
 
   minimize: y = 2x12 + x22 - x1x2 

 
As shown in Figure 5-2, the procedure begins at point xI = (2, 2), and step 0 locates the minimum 
on the contour tangent line sn, x0, by a single variable search along coordinate axis n (= 2) as 
follows:  
 
Step 0.  n = 2   s1T = (1, 0)   s2T = (0,1)   xIT = (2, 2) 
 

  x0 = xI + αI s2     or   

    
  y(αI) = 2(2)2 + (2 + αI)2 - (2)(2 + αI) 
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Using an exact line search, αI = -1 and x0T = (2, 1).  
 
Step 1.  s1T = (1,0)   s2T = (0,1)   x0T = (2, 1)  
 

 j = 1   x1 = x0 + α1 s1     or   

 
 y(α1) = 2(2 + α1)2 +(1) - (2 + α1)(1) 
 
 
 
 

Figure 5-1 Graphical Illustration of Powell’s Method and Steep Ascent Partan
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Using an exact line search, α1 = -7/4 and x1T = (¼, 1).  Replace s1 with s2  
 

 j = 2    x2 = x1 + α2 s2     or   

        
    y(α2) = 2(¼)2 + (1 + α2)2 - (¼)(1 + α2)  
 
Using an exact line search, α2 = - 7/8 and x2T = (1/4, 1/8)  
         

Step 2.   s2 is replaced with x2 – x0  =  

                                                            
Step 3.  Choose α3 so that y[x2 + α3(x2 – x0)] is a minimum.   Let    

 x3 = x2 + α3(x2 – x0) =  

        
 y(α3) = 2(1/4 - 1 3/4α3)2 + (1/8 - 7/8α3)2 -  (1/4 - 1 3/4α3)(1/8 - 7/8α3)  

 
Using an exact line search, α3 = 1/7 and x3T = (0, 0).  x3 is the minimum of the quadratic function, 
and the procedure ends. 
 
 If the function in the above example had not been quadratic, the procedure would have 
continued using s1T = (0, 1) and s2T = (-1 3/4, -7/8), i.e. the direction (x2 – x0) for the second cycle.  
In the third cycle, s1 would be replaced by s2 and s2 would be replaced by the new acceleration 
direction.  The cycles are repeated until a stopping criterion is met.  
 
 Powell (57) has pointed out that this procedure required modification if the acceleration 
directions become close to being linearly dependent.  He reported that this possibility has been 
found to be serious if the function depended on more than five variables.  Powell developed a test 
that determined if the new conjugate direction was to replace one of the existing directions or if 
the iterative cycle, steps 1-3, was to be repeated with the existing set of linearly independent 
directions.  If the reader plans to use this procedure Powell's paper (57) should be examined for 
the details of this test which was said to be essential to minimize a function of twenty independent 
variables.  
 
 Powell’s method has been called one of the more efficient and reliable of the direct search 
methods (15).  The reason is its relative simplicity and quadratic termination property.  The method 
uses sectioning and does not employ the acceleration step. It just searches along the coordinate 
axes one at a time and can be confounded by resolution ridges.  
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 The conjugate gradient method, gradient partan, has proved to be as effective as Powell's 
method.  It is an extension of gradient search and has the ability to locate the optimum of a function 
with ellipsoidal contours (quadratic termination) in a finite number of steps.  The term partan 
comes from a class of search techniques that employ parallel tangents (12).  These methods move 
in conjugate directions; or in the case of gradient partan, they move in the direction of conjugate 
gradients.  The procedure is diagrammed in Figure 5-1 (b), and this shows that the gradient line is 
perpendicular to the contour tangent.  Thus, the method can begin directly from the starting point 
as described below.  
 
 For two variables the procedure employs two gradient searches followed by an acceleration 
step, as shown in Figure 5-1 (a), for a function with elliptical contours.  The acceleration line 
passes through the optimum.  The equations for the gradient and acceleration lines for this method 
are:  
 

Figure 5-2 Illustration of Powell’s Method for 
y = x1

2 + 2x2
2 – x1x2 from Example 5-5 after Himmelblau (8) 
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 Gradient line:  xk+1 = xk + α y(xk)  (5-25) 

 
 Acceleration:  xk+1 = xk-3 + α (xk - xk-3) (5-26) 
 For more than two variables the diagram below shows the sequence of gradient searches 
and acceleration steps required for a function with ellipsoidal contours.   
 

 Gradient Partan Algorithm for a Function with Ellipsoidal Contours 
Number of Independent Variables 

 
   2         3        4         n  
Start:  x0  
 Gradient:   x0 → x2  
 
 Gradient:   x2 → x3    x4 → x5               x6 → x7               x2n-2 → x2n-1  
 
 Accelerate: x0 → x3 → x4      x2 → x5 → x6         x4 → x7 → x8         x2n-4 → x2n-1 → x2n  
 
To have the recursion relation shown above, it is necessary to omit a point numbered x1.   
 
 As shown in the above diagram for a function of n independent variables with ellipsoidal 
contours, a total of n gradient measurements and (2n-1) exact line searches are required to arrive 
at the optimum point x2n.  The search begins at x0, and a search along the gradient line locates point 
x2.  This is followed by another search along the gradient line to arrive at point x3.  Then an 
acceleration step is performed from point x0 through x3 to arrive at point x4, the optimum of a 
function with elliptical contours.  For n independent variables the procedure continues by repeating 
gradient searches and accelerations to arrive at point x2n, the optimum of a function of n 
independent variables having ellipsoidal contours.  This procedure is illustrated in the following 
example for a function with three independent variables.  In this case the optimum will be reached 
with three gradient measurements and five line searches.  
 
Example 5-6 (10) 
 
Determine the minimum of the following function using gradient partan starting at the point x0 = 
(2, -2, 1) 
  
     y = 2x12 + x22 + 3x33  
 
Beginning with a gradient search from point x0 to point x2, Equation 5-7 is used.  
 
     x = x0 + α y(x0)  
 
or  
 

x1 =  2 + 8α                  

∇

∇
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   x2 = -2 - 4α    where y =   

   x3 =  1 + 6α     
 
Performing an exact line search along the gradient from x0 gives:  
 
   y = 2(2 + 8α)2 + (-2 - 4α)2 + 3(1 + 6α)2  
 
Setting dy/dα = 0 to locate the minimum of y along the gradient line gives:  
 
   dy = 32(2 + 8α) - 8(-2 - 4α) + 36(1 + 6α) = 0  
   dα  
 
Solving for the optimum value of α gives α* = - 0.2302.  Using α* to compute x2 gives (0.1584,      
-1.079, - 0.3810)T, and the gradient line at x2 is:  
 
   x1 = 0.1584 + 0.6336α  
 
   x2 = -1.079 - 2.158α  
 
   x3 = -0.3810 - 2.287α  
 
Performing an exact line search along the gradient gives:  
 
   y = 2(0.1584 + 0.6336α)2 + (-1.079 - 2.158α)2 + 3(-0.3810 - 2.287α)2  
 
Setting dy/dα = 0 and solving gives α* = -0.2432.  Computing x3 gives (0.0043, -0.5543,  
0.1750)T.   
 
Accelerating from x0 through x3 to locate x4 gives:  
 
   x = x0 + α(x3 - x0) 
or  
   x1 =  2 - 1.996α  
 
   x2 = - 2 + 1.446α  
 
   x3 =  1 - 0.8250α  
 
Performing a search along the acceleration line gives:  
 
  y = 2(2 - 1.996α)2 +  (-2 + 1.446α)2 + 3(1 - 0.8250α)2  

∇
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Setting dy/dα = 0 and solving gives α* = 1.1034.  Computing x4 gives (-0.2021, -0.4048,  
0.0897)T.  
 
 The procedure is continued with a gradient search from x4 to x5 and an acceleration step 
from x2 through x5 to x6, the optimum.  The following tabulates the results of these calculations 
and the previous ones. 
              parameter of the    
                      gradient or  
    x1  x2  x3      acceleration line  
 
Start  x0  2            -2  1  
Gradient                      -0.2302  
  x2        0.1584        -1.079         -0.3810           
Gradient                      -0.2432  
  x3        0.0043             -0.5543             0.1750           
Accelerate          1.1034  
  x4      -0.2021             -0.4048             0.0897           
Gradient                      -0.2822  
  x5       0.0260             -0.1764            -0.0622           
Accelerate          1.1915  
Optimum x6               0.0001              0.0000             -0.0001            
 
The parameter of the gradient line is negative, showing that the procedure is moving in the 
direction of steep descent.  The parameter of the acceleration line is greater than one showing the 
new point lies beyond the last point.  
 
 This procedure has been used successfully on numerous problems.  However, it has been 
referred to as a "rich man's optimizer" by Wilde (10).  The method tends to oscillate on problems 
with sharp curving ridges, and numerical computation of the gradient requires more computer time 
and storage than some other methods.  The two equations used, the gradient and acceleration lines, 
are simple and easy to program; and the method will find better values in each step toward the 
optimum.  
 
 For those interested in a detailed discussion of conjugate gradient and direction methods, 
the books by Fletcher (4), Gill, et al. (6), Avriel (9), Himmelblau (8), Reklaitis et al. (15) and Wilde 
and Beightler (12) are recommended.  Now, we will examine another class of methods that rely 
on logical algorithms to move rapidly from the starting point to one near an optimum.  
 
 Logical Methods:  These procedures use algorithms based on logical concepts to find a 
sequence of improved values of the economic model leading to an optimum.  They begin with 
local exploration, and then attempt to accelerate in the direction of success.  Then if a failure occurs 
in that direction, the method repeats local exploration to find another direction of improved values 
of the economic model.  If this fails, the algorithm's logic may then try other strategies including 
a quadratic fit of the economic model (end game) to look for better values.  Typically, these 
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procedures do not require derivative measurements, and the algorithm compares the computed 
values of the economic model.  Thus, they are sometimes called function comparison methods.  
 
 Two of the better-known methods are pattern search (12) and the polytope or simplicial 
method (6).  Both have been used successfully on a number of problems.  Pattern search is probably 
the more widely used of the two procedures, and it will be discussed in more detail.  The polytope 
method performs local explorations at the vertices of an n-dimensional generalization of an 
equilateral triangle and can employ an acceleration step based on these results.  The details of this 
method and extensions are given by Gill, et al. (6).  
 
 The logical algorithm of pattern search is illustrated in Figure 5-3, and it begins with short 
excursions from the starting point to establish a pattern of improved values of the economic model.  
Based on these function comparisons, it accelerates in the direction established from the local 
explorations.  If successful, the acceleration is continued.  Then when a failure is encountered, i.e. 
a value of the economic model is less than the previous one, the pattern is said to be destroyed; 
and local explorations are performed to establish a new pattern of improved values of the economic 
model.  Again, acceleration is performed in the new direction until a failure is encountered.  The 
procedure continues in this fashion until an apparent optimum is reached.  Then the step size of 
the local exploration is reduced, attempting to find another direction of improvement in the 
economic model.  
 
 If this is successful, the procedure continues until another optimum is found.  Reducing the 
step size is repeated; and if this is unsuccessful in finding a new direction, the current point is 
declared a local optimum.  However, a quadratic fit at the point is needed to confirm that it is an 
optimum rather than a saddle point. 
 
  The algorithm has two parts.  One is the local exploration procedure, and the other is the 
acceleration step.  The local explorations are performed about a base point by perturbing one 
variable at a time.  Each time a variable is perturbed and a better value of the economic model is 
found, this point is used when the next variable is changed rather than returning to the original 
point.  These are called temporary heads and the first one t11 is computed by the following 
expression.  
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 {b1 + δ1 if y(b1 + δ1) > y(b) 
t11 = {b1 − δ1 if y(b1 − δ1) > y(b)      (5-27) 
 {b1  if y(b) > max [ y(b1 + δ1),  y(b1 − δ1)] 
 

where b1 is the starting point, δ1T = (δ1, 0, ... 0), and the first subscript on t11 refers to the pattern 
number and the second subscript refers to the coordinate axis of the variable being perturbed.  For 
coordinate axis x2 the perturbations are conducted around point t11 to locate point t12, and equation 
corresponding to Equation 6-27 above for the coordinate axis xj is:  
    

Figure 5-3 Illustration of Pattern Search
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    {t1,j – 1 + δ1 if y(t1,j – 1+ δ1) > y(t1,j – 1) 

 t1j =  {t1,j – 1 − δ1 if y(t1,j – 1− δ1) > y(t1,j – 1)     (5-28) 
  {t1,j – 1  if y(t1,j – 1) > max [y(t1,j – 1+ δ1), y(t1,j – 1− δ1)] 

 
 When these perturbations and evaluations are performed for each of the coordinate axes, a 
final point t1,n is located.  This point is designated b2, and an acceleration move is made in the 
direction established by the local exploration.  This is given by the following equation and locates 
point t20.  
 
   t20 = b1 + 2(b2 - b1) = b2 + (b2 - b1) (5-29) 
 
 Now, point t20 is used as the starting point for local exploration following the same 
procedure using Equations 5-27 and 5-28 to locate point b3.  Then the acceleration step is repeated 
using the same form of Equation 6-27 to locate t30.  
 
   t30 = b2 + 2(b3 - b2) = b3 + (b3- b2) (5-30) 
 
The search grows with repeated success.  
 
 At this point the two parts of the algorithm have been described in a general form.  The 
local exploration step and the acceleration step can be readily implemented in a computer program, 
and one is given by Kuester and Mize (16).  In addition, the following example illustrates the 
method on the contour diagram of a function of two independent variables shown in Figure 5-3.  
It shows the local exploration, acceleration, pattern destroyed and reestablished, and location of 
the optimum.  
 
Example 5-7 
 
Locate the maximum of the function shown in Figure 5-3 using pattern search starting at the points 
indicated as b1.   
 
To begin, local explorations are performed by moving in the positive coordinate axis direction first 
(open circles indicate failures; and solid circle indicate successes).  On the x1 axis the largest of 
y(x1, x2) is at t11.  Then perturbing on the x2 axis locates the largest value of y at t12 = b2.  Effort is 
not wasted by evaluating y in the negative direction on the x2 axis.   
 
Next, an acceleration step is performed using Equation 5-27 to locate point t20.  Then local 
exploration determines point b3, and acceleration step using Equation 5-28 locates point t30.  Local 
exploration locates point b4, and the acceleration step increases and changes directions as a result 
of the outcomes from the local exploration at t30 to reach point t40.  Local exploration determines 
point b5, and acceleration gives point t50.  However, y(t50) < y(b5); and the pattern is said to be 
destroyed.   
 
Local exploration is repeated, and b6 is located.  This sequence of local explorations is repeated 
determining points: t60, b7, t70, b8, t80, b9, and t90.  However, y(t90) < y(b9) and the pattern is 
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destroyed.  Local exploration is repeated to locate b10, and acceleration is to t10,0.  However, local 
exploration around t10,0 shows that this point has the largest value of y and t10,0 = b11.  Then the 
procedure would reduce the step-size to attempt to find a direction of improvement.   
 
Although this is not shown in Figure 5-3, the outcome would be that y(b11) is still the largest value.  
Point b11 would be declared a local maximum, and a quadratic fit to the function could be 
performed to confirm the maximum.  The pattern search steps are summarized on Figure 5-3.  
 
 Pattern search has been used successfully on a number of types of problems, and it has 
been found to be most effective on problems with a relatively small number of independent 
variables e.g. ten or fewer.  It has the advantage of adjusting to the terrain of a function and will 
follow a curving ridge.  However, it can be confounded by resolution ridges (12), and a quadratic 
fit is appropriate to avoid this weakness.  
 
 There are a number of other methods based on logical algorithms.  These are discussed in 
some detail in the texts by Himmelblau (8), Gill, Murray and Wright (6), and Reklaitis et al. (15). 
However, none of those methods are superior to the ones discussed here.  Now, we will turn our 
attention to methods used for constrained multivariable search problems and see that the DFP and 
BFGS procedures are an integral part of some of these methods.  
 
Constrained Multivariable Search Methods  
 
 There are essentially six types of procedures to solve constrained nonlinear optimization 
problems.  The three considered most successful are successive linear programming, successive 
quadratic programming and the generalized reduced-gradient method.  The other three have not 
proved as useful, especially on problems with a large number of variables (more than 20).  These 
are penalty and barrier function methods, augmented Lagrange functions and the methods of 
feasible directions (or projections) that are sometimes called methods of restricted movement.  Of 
these methods only successive linear programming does not require an unconstrained single or 
multivariable search algorithm.  Also, penalty and augmented function methods have been used 
with successive quadratic programming.  Each of these methods will be discussed in the order that 
they were mentioned.  This will be followed by a review of studies that have evaluated the 
performance of the various methods.  
 
 Successive Linear Programming: This procedure was called the method of approximate 
programming (MAP) by Griffith and Stewart (18) of Shell Oil Company who originally proposed 
and tested the procedure on petroleum refinery optimization.  As the name implies, the method 
uses linear programming as a search technique.  A starting point is selected, and the nonlinear 
economic model and constraints are linearized about this point to give a linear problem that can 
be solved by the Simplex Method or its extensions.  The point from the linear programming 
solution can be used as a new point to linearize the nonlinear problem, and this can be continued 
until a stopping criterion is met.  As shown by Reklaitis et al. (15), this procedure works without 
safeguards for functions that are mildly nonlinear.  However, it is necessary to bound the steps 
taken in the iterations to ensure that: the economic model improves, the values of the independent 
variables remain in the feasible region and the procedure converges to the optimum.  These 
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safeguards are bounds on the independent variables specified in advance of solving the linear 
programming problem.  The net result is that the bounds are additional constraint equations.  If the 
bounds are set too small, the procedure will move slowly toward the optimum.  If they are set too 
large, infeasible solutions will be generated.  Consequently, logic is incorporated into computer 
programs to expand the bounds when they hamper rapid progress and shrink them so that the 
procedure may converge to a stationary point solution (1).  
 
 For successive linear programming, the general nonlinear optimization problem can be 
written as:  
 
   optimize: y(x)      (5-31) 
 
   subject to: fi(x) < bi for i = 1, 2, ..., m  
     uj > xj > lj for j = 1, 2, .., n  
 
where upper and lower limits are shown specifically on the independent variables.  
  
 Now the economic model y(x) and the constraints fi(x) can be linearized around a feasible 
point xk to give:  

       (5-32) 

 
 The problem is in a linear programming format in the form of Equation 5-32.  However, 
the values of Δxj can take on either positive or negative values depending on the location of the 
optimum.  Negative values for Δxj are not acceptable with the Simplex Algorithm so a change of 
variables was made by Griffith and Stewart (18) as follows.  
 
   Δxj = Δxj+ − Δxj −     (5-33) 
 

where     

 

optimize: c jΔx j = y− y(xk )
j=1

n

∑

subject to: aij
j=1

n

∑ Δx j ≤ bi − fi (x j ) for  i =1, 2,…,m

ui − x jk ≥ Δx j ≥ l j − x jk for   j =1, 2,…,n

Δx j = x j − x jk c j =
∂y(xk )
∂x j

aij =
∂fi (xk )
∂x j

Δx j
+ =

Δx j ifΔx j ≥ 0
0 ifΔx j < 0

#
$
%

&%

Δx j
− =

−Δx j ifΔx j ≤ 0
0 ifΔx j > 0

#
$
%
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Substituting Equation 5-33 into Equation 5-32, now the linear programming problem has the 
form:  
 

    (5-34) 

 
 The bounds on the upper and lower limits on the variables are specified by (uj - xjk) and (xjk 
- lj) in Equation 5-34.  The inequality Δxj+ - Δxj-  >  (lj  - xjk) is written as shown above to have a 
positive right hand side of these constraint equations as required by the Simplex Method.   
 
 The value of the next point for linearizing is given by xjk+1 = xjk + Δxj+ - Δxj-.  The procedure 
is started by specifying a starting point x0(k=0).  
 
 The above equations are now a linear programming problem where the independent 
variables are Δxj+ and Δxj-.  The value of the bound uj and lj may affect the rate of convergence of 
the algorithm.  The use of bounds is illustrated in the following example given by Griffith and 
Stewart (18).  
 
Example 5-8 (18) 
 
Locate the maximum of the following constrained nonlinear optimization problem by the method 
of successive linear programming starting at x0 (1, 1), and using the bounds (uj - xjk) = (xjk - lj) = 
1.  
 
   

maximize: y = 2x1 + x2  
 
       subject to:   x12 + x22 < 25  
 
          x12 - x22 <  7  
 
The two constraint equations are shown in Figure 5-4 where they intersect at the maximum of the 
economic model, point x*(4, 3).  
 

optimize: c jΔx j
+
j − c jΔx j

−
j = y− y(xk

j=1

n

∑ )
j=1

n

∑

subject to: aij
j=1

n

∑ Δx j
+ − aij

j=1

n

∑ Δx j
− ≤ bi − fi (x j ) for  i =1, 2,…,m

Δx j
+ −Δx j

− ≤ (ui − x jk ) for   j =1, 2,…,n

−Δx j
+ +Δx j

− ≤ (x jk − l j )
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For this problem the successive linear programming approximation is obtained using Equation 5-
34.  
 maximize: 2Δx1+ + Δx2+ − 2Δx1- − Δx2- = y − (2x1k + x2k) 
 
 subject to: 
  2x1k Δx1+ + 2x2k Δx2+  − 2 x1k Δx1-  − 2x2k Δx2-  ≤ 25 − [x1k2 + x2k2] 
  2x1k Δx1+ − 2x2k Δx2+  − 2 x1k Δx1- + 2x2k Δx2-  ≤   7 − [x1k2 − x2k2] 
                Δx1+                    −         Δx1-   ≤   1 
              Δx2+   −        Δx2- ≤   1 
           −Δx1+   +          Δx1-   ≤   1 
             −Δx2+   +        Δx2- ≤   1 
There are four variables in the above equations Δx1+, Δx1-, Δx2+, and Δx2-.  
Starting at point x0 (1, 1) the above equations become:  
 
 maximize: 2Δx1+  + Δx2+    − 2Δx1-   − Δx2-   = y − 3 
 
 subject to: 2Δx1+  + 2Δx2+  − 2Δx1-  − 2Δx2-  ≤ 23 
        2Δx1+  − 2Δx2+  − 2Δx1-  + 2Δx2-  ≤ 7 

Figure 5-4 Diagram Showing the Successive Linear Programming Solution 
of Example 5-8 after Griffith and Stewart (18)
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          Δx1+         −   Δx1-    ≤ 1 
         Δx2+   −   Δx2-  ≤ 1 
        −Δx1+   +   Δx1-    ≤ 1 

   −Δx2+   +   Δx2-  ≤ 1 
 
Solving by the Simplex Method gives: 
 

Δx1+ = 1  Δx1- = 0 Δx2+ = 1 Δx2- = 0 
 
x1  is the computed as follows: 
 
  x1, 1 = x1, 0 + Δx1+ − Δx1- = 1 + 1 − 0 = 2 
 
  x2, 1 = x2, 0 + Δx2+ − Δx2- = 1 + 1 − 0 = 2 
and   
   x1 (2, 2)  y(x1) = 6 
 
Linearizing around x2 (2, 2) gives: 
 

Maximize: 2Δx1+  + Δx2+    − 2Δx1-   − Δx2-   = y − 6 
  
 Subject to: 4Δx1+  + 4Δx2+  − 4Δx1-  − 4Δx2-  ≤ 17 
        4Δx1+  − 4Δx2+  − 4Δx1-  + 4Δx2-  ≤ 7 
          Δx1+         −   Δx1-    ≤ 1 
         Δx2+   −   Δx2-  ≤ 1 
        −Δx1+   +  Δx1-    ≤ 1 

   −Δx2+   +   Δx2-  ≤ 1 
 
Solving by the Simplex Method gives: 
 

Δx1+ = 1  Δx1- = 0 Δx2+ = 1 Δx2- = 0 
 
x2  is the computed as follows: 
 
  x1, 2 = x1, 1 + Δx1+ − Δx1- = 2 + 1 − 0 = 3 
 

x2, 2 = x1, 2 + Δx2+ − Δx2- = 2 + 1 − 0 = 3 
 

and     x2(3, 3)  y(x2) = 9 
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 Note that in Figure 5-4, the movement is controlled by the step size to this point. 
 
Linearizing around x2 (3, 3) gives: 
 
 maximize: 2Δx1+  + Δx2+    − 2Δx1-   − Δx2-   = y − 9 
 
 subject to: 6Δx1+  + 6Δx2+  − 6Δx1-  − 6Δx2-  ≤ 7 
        6Δx1+  − 6Δx2+  − 6Δx1-  + 6Δx2-  ≤ 7 
          Δx1+         −   Δx1-    ≤ 1 
         Δx2+   −   Δx2-  ≤ 1 
        −Δx1+   +   Δx1-    ≤ 1 

   −Δx2+   +   Δx2-  ≤ 1 
 
Solving by the Simplex Method gives: 
 

Δx1+ = 1  Δx1- = 0 Δx2+ = 1/6 Δx2- = 0 
 
x3  is the computed as follows: 
 
  x1, 3 = x1, 2 + Δx1+ − Δx1- = 3 + 1 − 0 = 4 
 

x2, 3 = x2, 2 + Δx2+ − Δx2- = 3 + 1/6 − 0 = 3 1/6  
and   
   x3(4, 3 1/6)  y(x3) = 11 1/6 
 
Note that in Figure 5-4, the movement is controlled by one of the constraint equations. 
 
Point x3 is slightly infeasible by 1/6 on the x2 axis.  Deciding to continue the search at this infeasible 
point is called following an infeasible path strategy.  The other option is to return to point x2 and 
reduce the step size by one-half, for example.  The right hand side of the last four constraint 
equations would be changed from 1.0 to 0.5.  If the optimization program uses the infeasible path 
strategy, then checks are built-in to prevent increasing infeasible points.  
 
Linearizing around x3 (4, 3 1/6) gives: 
 
 maximize: 2Δx1+  +  Δx2+    − 2Δx1-            − Δx2-   = y – 11 1/6 
 
 subject to: 8Δx1+  + (19/3)Δx2+  − 8Δx1-  − (19/3)Δx2-  ≤ -37/36 
        8Δx1+  − (19/3)Δx2+  − 8Δx1-  + (19/3)Δx2-  ≤   37/36 
          Δx1+         −   Δx1-     ≤ 1 
                 Δx2+   −          Δx2-  ≤ 1 
        −Δx1+   +   Δx1-     ≤ 1 

−           Δx2+   +          Δx2-  ≤ 1 
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Solving by the Simplex Method gives: 
 

Δx1+ = 0.0  Δx1- = 0.0 Δx2+ = 0.0 Δx2- = 0.1623 
 
x4  is the computed as follows: 
 
  x1,4 = x1, 3 + Δx1+ − Δx1- = 4.0 + 0.0 − 0.0 = 4.00 
 

x2,4 = x2, 3 + Δx2+ − Δx2- = 3 1/6 + 0.0 − 0.1623 = 3.0044 
and   
   x4 (4.0, 3.0044)  y(x4) = 11.00 
 
Note point x4 is less infeasible than point x3. 
 
Linearizing around x4(4.0, 3.0044) gives: 
 
 Maximize: 2Δx1+  + Δx2+    −  2Δx1-   − Δx2-   = y − 11.011 
 
 Subject to: 8.0Δx1+  + 6.0088Δx2+  − 8.0Δx1-  − 6.0088Δx2-  ≤ − 0.0264 
        8.0Δx1+  − 6.0088Δx2+  − 8.0Δx1-  + 6.0088Δx2-  ≤    0.0264 
             Δx1+         −      Δx1-    ≤ 1 
                  Δx2+   −            Δx2-  ≤ 1 
           −Δx1+   +      Δx1-    ≤ 1 

−           Δx2+   +            Δx2-  ≤ 1 
Solving by the Simplex Method gives: 
 

Δx1+ = 0.0  Δx1- = 0.0 Δx2+ = 0.0 Δx2- = 0.00438 
x5  is the computed as follows: 
  x1, 5 = x1, 4 + Δx1+ − Δx1- = 4.0 + 0.0 − 0.0 = 4.00 
 

x2, 5 = x2, 4 + Δx2+ − Δx2- = 3.0044 + 0.0 − 0..00438 = 3.0000 
 

and   
   x5(4.0, 3.0000)  y(x5) = 11.00 
 
This is the optimal solution and is the same as given by Griffith and Stewart (18).     
 
It should be noted that point x3 (4, 3 1/6) is an infeasible point and does not satisfy the first 
constraint equation.  However, this point is sufficiently close to the optimum that the method 
converges to the optimum after linearizing around this point.  Convergence to the optimum will 
not take place if bounds are not used, however. 
  
 This problem was solved without the constraints bounding the variables, i.e. omitting the 
last four constraint equations.  Starting at point x0(1, 1) the point x1(8.5, 5.0) was found.  
Linearizing around x1 (8.5, 5.0) and solving by the Simplex Method gave the point x2(0,12.23).  
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Then linearizing around x2(0, 12.23) gave a set of constraint equations that had an unbounded 
solution.  Consequently, bounds were required on this problem to ensure convergence to a solution.   
 
 Computer programs can reduce the bounds when an infeasible solution is located and 
resolve the problem.  This was done for the problem starting at point x2(3, 3) since point x3(4, 3 
1/6) was infeasible, and the bounds were reduced by one-half each time an infeasible point was 
obtained.  Following this procedure, the next two iterations for this problem were (3.563, 3.492) 
and (3.595, 3.475).  Further examination showed the method had difficulty following the first 
constraint to the optimum.  As Himmelblau (8) points out, when constraints become active then 
successive linear programming's "progress becomes quite slow."  Consequently, logic is 
incorporated in some programs to allow the procedure to continue from an infeasible point, as was 
done by Griffith and Stewart in this example.  
   
 For those interested in having a successive linear programming code, Lasdon (19) reports 
that the most widely used and best known one, POP (Process Optimization Procedure) is available 
from the SHARE library (COSMIC, Bartow Hall, University of Georgia; Athens GA 30601).  
Other listings of sources of optimization codes are given by Sandgren (20) and Lasdon and Waren 
(22). 
  
 Large linear programming codes have been used with large simulation models in an 
iterative fashion to approximate the nonlinearities in these models.  This approach of using linear 
programming successively has been successful in large plants.  In most cases, this procedure has 
been used by companies that have many man-years of effort in the development and use of a large 
linear programming code for plant optimization and a corresponding amount of effort in large 
simulations of key process units for prediction of performance and yields.  An example of this is 
in petroleum refining where linear programming is used for refinery optimization.  In addition, 
elaborate simulations and correlations have been developed for processes such as catalytic 
cracking, reforming and distillation.  
 
 As discussed in Chapter 3, the results of a linear programming optimization are as accurate 
as the parameters in the economic model and constraint equations, c, A and b.  As shown in Figure 
5-5 iterative procedures have been developed that use these programs together.  The large 
simulation codes are used to compute the parameters used in the large linear programming code.  
Then the linear programming code is used to generate an optimal solution in terms of the 
independent variables, x, which are the process variables required by the simulation codes.  This 
iteration procedure is continued until a stopping criterion is met.  Both the linear programming 
code and the process simulators are very large programs, and no attempt is made to have them run 
at the same time.  Typically, the output from the simulators is edited by a separate program to 
produce a data set in the form required by the linear programming code.  Also, another program 
can be used to manipulate the output from the linear programming code into a data set for use by 
the simulation programs.  Further descriptions of these procedures are given by Pollack and Lieder 
(31) for petroleum refinery optimization and by O'Neil, et al. (32) for the allocation of natural gas 
in large pipeline networks.  
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 Successive Quadratic Programming:  Like successive linear programming, a quadratic 
programming problem is formed from the nonlinear programming problem, and it is solved 
iteratively until an optimum is reached.  However, the iterative procedure differs from that of 
successive linear programming.  As described by Lasdon and Waren (22), the quadratic 
programming solution is not accepted immediately as the next point to continue the search, but a 
single variable search is performed between the old and new points to have a better and feasible 
point.  
 
 In quadratic programming the economic model is a quadratic function, and the constraints 
are all linear equations.  To solve this problem the Lagrange function is formed, and the Kuhn-
Tucker conditions are applied to the Lagrange function (23, 24, 25) to obtain a set of linear 
equations.  This set of linear equations can then be solved by the Simplex Method for the optimum.  
It turns out that artificial variables are required for part of the constraints and the slack variables 
can be used for the other constraints to have an initially feasible basis.  Also, finding an initial 
basic feasible solution may be the only feasible solution (25), so the linear programming 

Figure 5-5 Diagram Showing the Use of Process Simulators with Linear Programming
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computational effort is minimal.  At this point it is important to understand the solution of a 
quadratic programming problem, and this procedure will be described next and illustrated with an 
example.  Then the successive quadratic programming algorithm will be described and illustrated 
with an example.  Also, modifications of the procedure will be discussed that reduce the 
computational effort in numerically evaluating the Hessian matrix that must be obtained from the 
nonlinear programming problem.  
 
 Theoretically, using a quadratic function to approximate the nonlinear economic model of 
the process can be considered superior to a linear function to represent the economic model.  This 
is part of the motivation for using quadratic programming that can be represented by the following 
equations:  
 

   

 

       (5-35) 

 
   
 
where qjk = qkj would be the second partial derivatives with respect to xj and xk of the nonlinear 
economic model.  They would be computed numerically or analytically from the nonlinear 
problem given by Equation 5-31.  Also, cj and aij would be computed as shown by Equation 5-32 
either numerically or analytically from the nonlinear problem, Equation 5-31.  
 
 The quadratic programming procedure begins by adding slack variables xn+i to the linear 
constraint equations.  It will not be necessary to use xn+i2, since the problem will be solved by linear 
programming, and all of the variables must be positive or zero.  The Lagrange function is formed 
as follows:  
 

        (5-36) 

 
In the second term of Equation 5-36, positive Lagrange multipliers are required, so a negative sign 
is used on this term with the constraint equations. (See Equation 2-49.)  The third term is included 
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to ensure the variables are positive or zero, i.e. xj > 0 or - xj  < 0 which is written as an equality – 
xj + xsj = 0 with slack variables, xsj. 
 
 Setting the first partial derivatives of the Lagrange function with respect to xj and λi equal 
to zero give the following set of (n + m) linear algebraic equations:  
 

     (5-37) 

 
  

       (5-38)  

 
Considering λm + j as a slack variable, Equation 5-37 can be written as: 
 

       (5-39) 

 
The inequality form of the Kuhn - Tucker conditions, Equation 5-38, is used to account for xj  > 
0. (See Hillier and Lieberman (25), and Hadley (59)). 
 

        (5-40) 

 
Also, the complementary slackness conditions must be satisfied, i.e. product of the slack 
variables xn+i and the Lagrange multipliers λi are zero.  
 
    (5-41) 
 
If xn+i = 0, then the constraint is active, an equality; and λi ≠ 0.  However, if xn+i ≠ 0, then the 
constraint is inactive, an inequality; and λi = 0.  For more details refer to the discussion in Chapter 
2.  
 
 The set of Equations 5-39 and 5-40 can be converted to constraint equations for a linear 
programming problem in the following way.  Surplus variables are added to Equation 5-39 as sj, 
and slack variables are added to Equation 6-40 as xn+i.  The slack variables xn+i can serve as the 
variables for an initially feasible basis for Equations 5-40.  However, artificial variables are 
required to have an initially feasible basis for Equation 5-39.  Adding artificial variables zj with a 
coefficient cj to Equations 5-39 is a convenient way to start with an initially feasible basis with zj 
= 1.  Also, the objective function will be to minimize the sum of the artificial variables, zj, to ensure 
that they will not be in the final optimal solution.  As a result of these modifications, Equations 5-
39 and 5-40 become the constraints in the following linear programming problem: 
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      (5-42) 

             
 This is now a linear programming problem which can be solved for optimal values of x 
and λ, the solution of the quadratic programming problem.  In addition, the solution must satisfy 
x > 0, λ > 0 and λi xn+i = 0.  Consequently, the Simplex Algorithm has to be modified to avoid 
having both λi and xn+i be basic variables, i.e. nonzero, to satisfy the complimentary slackness 
conditions (26).  This may require choosing the second, best variable to enter the basis in 
proceeding with the Simplex Algorithm if either λi or xn+i are in the basis and the other one is to 
enter.  
 
 Franklin (23) has given uniqueness and existence theorems that prove the above procedure 
is the solution to the quadratic programming problem and is a recommended reference for those 
details.  At this point the method is illustrated with an example. 
 
Example 5-9 (25) 
 
Using quadratic programming determine the maximum of the following function subject to the 
constraint given.  
 
   maximize: 5x1 + x2 - 1/2(2x12 - 2x1x2 - 2x2x1 + 2x22)  
  

  subject to:   x1 + x2 ≤ 2  
 

The quadratic programming problem is constructed using Equation 5-42 with c1 = 5, c2 = 1, q11 = 
2, q12 = -2, q21 = -2, q22 = 2, a11 = 1, a12 = 1 and b1 = 2.  
 
The linear programming problem from Equation 5-42 is:  
 
 minimize:  z1 + z2  
  

subject to: 2x1 - 2x2 + λ1 - s1 + 5z1 = 5  
         

          -2x1 + 2x2 + λ1 - s2 +  z2  = 1  
    

  x1 +  x2 + x3     = 2  
 
Eliminating z1 and z2 from the objective function gives the following set of equations for the 
application of the Simplex Method.  

minimize: z j    
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1 3/5 x1 − 1 3/5x2 − 1 1/5λ1 + 1/5s1 + s2   = C-2  C = 2  
       2x1 −       2x2 +         λ1 −      s1        + 5z1  = 5  z1 = 1 
      -2x1 +       2x2 +         λ1    − s2         + z2 = 1  z2 = 1 
         x1 +         x2 + x3      = 2  x3 = 2 
 __________________________________________________________________________ 
  
x2 enters the basis, z2 leaves the basis  
 
0x1   − 2/5λ1 + 1/5 s1 + 1/5 s2 +    4/3z2 = C-1 1/5    C = 1 1/5  
     2λ1 −       s1 −       s2 + 5z1 + z2 = 6   z1 = 6/5  
-x1 + x2  +  ½ λ1   − ½ s2 +               ½ z2 = 1/2  x2 =  ½  
2x1         + x3 -  ½ λ1      +  ½ s2 −      ½ z2 = 1 ½  x3 = 1 ½  
__________________________________________________________________________  
 
λ1 would enter the basis, and the second constraint equation would be used for algebraic 
manipulations to ensure a positive right-hand side of the constraint equations according to the 
Simplex Algorithm.  However, this would have both λ1 and x3 in the basis (nonzero); and the 
complementary slackness conditions, λ1x3 = 0, would not be satisfied.  Consequently, another 
variable must be selected to enter the basis.  This is usually the one with the next small coefficient 
and for this problem is x1.  Select x1 to enter the basis, and x3 leaves the basis.  
 
 
              −2/5 λ1 + 1/5 s1 + 1/5 s2          +  4/5 z2 = C -1 1/5   C = 1 1/5  
      2   λ1  −       s1  −      s2 + 5z1 +        z2 = 6  z1 = 6/5  
      x2 +    ½x3  + ¼  λ1                − ¼   s2          +    ¼ z2 = 1 ¼ x2 = 1 ¼ 
x1       +    ½ x3 − ¼  λ1                + ¼   s2          −  1/4 z2 = ¾  x1 = ¾  
__________________________________________________________________________  
 
λ1 enters the basis, z1 leaves the basis.  
 
             z1 +       z2 = C - 0  C = 0  
           λ1 −  1/3 s1  −  1/3 s2 +    5/3 z1 + 1/3 z2 = 3  λ1 = 3  
    x2 + x3   + 1/12 s1 + 1/12 s2 − 5/12 z1 − 1/6 z2 = 1/2  x2 = 1/2  
x1 + x3   − 1/12 s1 − 1/12 s2 + 5/12 z1 − 1/6 z2 = 3/2  x1 = 3/2  
__________________________________________________________________________  
 
The minimum has been reached.  All of the coefficients of the variables in the objective function 
are positive.  Therefore, the optimal solution to this quadratic programming problem is:  
 

x1 = 3/2 x2 = ½  λ1 = 3  x3 = 0 
 
The positive Lagrange multiplier is consistent with the Kuhn-Tucker conditions for a maximum, 
Equation 2-48, since a negative sign was used in Equation 5-36.  
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 Successive quadratic programming iteratively solves a nonlinear programming problem by 
using a quadratic approximation to the economic model and a linear approximation to the 
constraint equations.  As the series of quadratic programming problems are solved, these 
intermediate solutions generate a sequence of points that must remain in the feasible region or 
sufficiently close to this region to converge to the optimum.  The logic used with this method is to 
search along the line between the new and previous point to maintain a feasible or near feasible 
solution.  Also, the computational effort in evaluating the Hessian matrix is significant, and quasi-
Newton approximations have been used to reduce this effort.  The following example illustrates 
successive quadratic programming for a simple problem.  The discussion that follows describes 
modifications to the computational procedure to improve the efficiency of the method.  
 
Example 5-10 
 
Solve the following problem by successive quadratic programming starting at point x0 (0,0).  
  

  minimize:  (x1 - 1)2 + (x2 - 2)2  
  

  subject to: 0.104x12 - 0.75x1 + x2 ≤ 0.85  
     

         x1 + x2 ≤ 4.0  
 
The contours of the economic model and the constraint equations are shown in Figure 5-6.   
 
The nonlinear constraint equation is linearized about the point xk, and it has the following form.  
 
   (0.208x1k - 0.75)x1 + x2 ≤ 0.85 + 0.104x1k2  
 
Placing the problem in the form of Equation 5-35, gives:  
 
   maximize: 2x1 + 2x2 - 1/2 (2x12 + 2x22) - 5  
  

  subject to:  (0.208x1k - 0.75)x1 + x2 ≤ 0.85 + 0.104x1k2  
 
                   x1 + x2 ≤ 4  
 

The quadratic programming problem is constructed using Equation 5-42 with c1 = 2, c2 = 4, q11 = 
2, q12 = q21 = 0, q22 = 2, a11 =  (0.208x1k − 0.75), a12 = 1, a21 = 1, a22 = 1, b1 = 0.85 + 0.104x1k, b2 
= 4:   
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 minimize:  z1 + z2  
  

subject to:  2x1 + (0.208x1k − 0.75)λ1 + λ2 −   s1        + 2z1        = 2  
 
         2x1 +          λ1 + λ2         − s2               +  4 z2  = 4 
 
    (0.208x1k − 0.75) x1 + x2 + x3            = 0.85 + 0.104x1k2      

 
       x1 + x2         + x4            = 4  

 
Solving the above linear programming problem by the Simplex Method with x0 = (0, 0) and 
ensuring that the complementary slackness conditions are met gives the following result for x0*.  
 
 x1 = 1.192 x2 = 1.740 λ1 = 0.512 
 

Figure 5-6 Diagram of Solution of the Multivariable Optimization Problem 
in Example 5-10 by Successive Quadratic Programming
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This point is shown on Figure 5-6, and it is outside the feasible region. Consequently, a search 
along the line between the starting point x0 (0,0) and x0* (1.192, 1.740) locates feasible point 
x1(1.039, 1.517) on the first constraint.  
 

The quadratic programming problem is formulated around point x1 and is solved as was 
done above.  The result is x1* (1.209, 1.608) with λ1 = 0.784 which is infeasible but “close enough” 
to continue with this point becoming x2 on an “infeasible path.” 

 
   x1 =1.209 x2 =  1.608  λ1 = 0.784 
 
Repeating the procedure by solving the quadratic programming problem at x2 gives the 

value of x2* (1.199, 1.600) with λ1 = 0.800.  This point is feasible and is called x3. 
 
   x1 =1.199 x2 =1.600 λ1 = 0.800. 
 

This point is sufficiently close to the optimum of the problem x* (1.2, 1.6) for the purposes of 
this illustration to say that a converged solution has been obtained. 

 
 The Wilson-Han-Powell method is an enhancement to successive quadratic programming 
where the Hessian matrix, [qjk] of Equation 5-35, is replaced by a quasi-Newton update formula 
such as the BFGS algorithm, Equation 5-20. Consequently, only first partial derivative information 
is required, and this is obtained from finite difference approximations of the Lagrange function, 
Equation 5-36.  Also, an exact penalty function is used with the line search to adjust the step from 
one feasible point to the next feasible point. The theoretical basis for this algorithm is that it has a 
superlinear convergence rate if an exact penalty function is used with the DFP or BFGS update for 
the Hessian matrix of the Lagrange function, and global convergence is obtained to a Kuhn-Tucker 
point when minimizing an economic model that is bounded below and has convex functions for 
constraint equations.  The details and proofs are given by Han (51,52). 
 

The problem in Example 5-10 was solved with the Wilson-Han- Powell algorithm. The 
identity matrix was used for the Hessian matrix at the starting point x0 (0, 0).  The subsequent steps 
in the solution were x1 (1.3803, 1.6871), x2 (1.203, 1.6038), and x3 (1.1988, 1.603), which was 
sufficiently close to the optimum to stop.  Generally, less computational effort is required with the 
Wilson-Han-Powell algorithm since second order partial derivatives do not have to be evaluated.  

  
 The Exxon quadratic programming code (1) uses the Wilson-Han-Powell algorithm 
described above, and they have added refinements to minimize the computational effort in 
evaluating the second partial derivatives of the Hessian matrix.  This typical large quadratic 
programming code is described as having the following steps of basic logic.  An initial starting 
point is selected, and the linearized constraints are constructed numerically.  Then the matrix of 
second partial derivatives, the Hessian matrix, is evaluated either numerically or a DFP (Davidon, 
Fletcher, Powell) approximation can be used.  The quadratic programming problem is solved 
generating a new optimal point.  Using this new point and the old point, a single variable search is 
conducted for an improved, feasible solution to the nonlinear problem.  This is followed by 
changes in step and function values, feasibility checks and termination tests using the Kuhn-Tucker 
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conditions.  Some options included in the program include using analytical derivatives when 
furnished, inputting the Hessian matrix by the user or having it be a specified multiple of the 
identity matrix with up-dating by the DFP algorithm, and having the user specify whether or not 
intermediate solutions are required to be feasible.  
 
 In closing this section, it should be mentioned that the Wilson- Han-Powell (WHP) method 
has been used successfully on computer-aided process design problems, as described by 
Jirapongphan, et al. (42), Vanderplaats (24) and Biegler and Cuthrell (53).  In some applications, 
the constraint equations were not converged for each step taken by the optimization algorithm, but 
an infeasible trajectory was followed where the constraints were not satisfied until the optimum 
was reached.  In the line search to adjust the step from one point to the next, an exact penalty 
function was used.  A step length parameter was employed with the penalty function to force 
convergence from poor starting conditions.  The size of the quadratic programming problem was 
reduced by substituting the linearized equality constraint equations into the quadratic economic 
model leaving only the inequalities as constraints.  The result can be a significant reduction in the 
number of the independent variables for highly constrained problems.  
 

The successive quadratic programming method has been shown to be one of the three better 
procedures.  Now, the equally successful procedure called the generalized reduced gradient 
method, is described.  
  
 Generalized Reduced Gradient Method:  This procedure is one of a class of techniques 
called reduced-gradient or gradient projection methods that are based on extending methods for 
linear constraints to apply to nonlinear constraints (6). They adjust the variables, so the active 
constraints continue to be satisfied as the procedure moves from one point to another.  The ideas 
for these algorithms were devised by Wilde and Beightler (12) using the name of constrained 
derivatives, by Wolfe (29) using the name of the reduced-gradient method and extension by 
Abadie and Carpenter (30) using the name generalized reduced gradient.  According to Avriel (9) 
if the economic model and constraints are linear this procedure is the Simplex Method of linear 
programming, and if no constraints are present it is gradient search.  
 
 The development of the procedure begins with the nonlinear optimization problem written 
with equality constraints.  The necessary slack and surplus variables have been added as xs or xs2 
to any inequality constraints, and the problem is:  
 
  optimize:   y(x)      (5-43) 
   

subject to:  fi(x) = 0         for i = 1, 2, ... , m  
 
Again, there are m constraint equations and n independent variables with n > m.  Also, although 
not specifically written above, the variables can have upper and lower limits; and the procedure as 
described here will ensure that all variables are positive or zero.  
 
 The idea of generalized reduced gradient is to convert the constrained problem into an 
unconstrained one by using direct substitution.  If direct substitution were possible it would reduce 
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the number of independent variables to (n − m) and eliminate the constraint equations.  However, 
with nonlinear constraint equations, it is not feasible to solve the m constraint equations for m of 
the independent variables in terms of the remaining (n − m) variables and then to substitute to these 
equations into the economic model.  Therefore, the procedures of constrained variation and 
Lagrange multipliers in the classical theory of maxima and minima are required.  There, the 
economic model and constraint equations were expanded in a Taylor series, and only the first order 
terms were retained.  Then with these linear equations, the constraint equations could be used to 
reduce the number of independent variables.  This led to the Jacobian determinants of the method 
of constrained variation and the definition of the Lagrange multiplier being a ratio of partial 
derivatives as was shown in Chapter 2.    
 
 The development of the generalized reduced gradient method follows that of constrained 
variation.  The case of two independent variables and one constraint equation will be used to 
demonstrate the concept, and then the general case will be described.  Consider the following 
problem: 
 
  optimize:   y(x1, x2)    (5-44) 
 
  subject to:  f(x1, x2) = 0  
 
Expanding the above in a Taylor series about a feasible point xk (x1k, x2k) gives:  
 

            (5-45 a and b) 

   
Substituting Equation 5-44b into Equation 5-44a to eliminate x2 gives, after some rearrangement:  
 

  

            (5-46) 
 

In Equation 5-46 the first two terms on the right-hand side are known constants being 
evaluated at point xk.  The coefficient of (x1 - x1k) of the third term is a known constant, and this 
term gives the x1 direction to move toward the optimum as in steep ascent. To compute the 
stationary point for this equation, dy/dx1 = 0; and the result is the same as for constrained variation, 
Equation 2-18.  The term in the brackets of Equation 5-45 is solved together with the constraint 
equation for the stationary point.  However, the term in the bracket also can be viewed as giving 
the direction to move away from xk to obtain improved values of the economic model and satisfy 
the constraint equation. 
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 The generalized reduced gradient method uses the same approach as described above for 
two independent variables, which is to find an improved direction for the economic model and 
also to satisfy the constraint equations.  This leads to an expression for the reduced gradient from 
Equation 6-43.  To develop this method, the independent variables are separated into basic and 
nonbasic ones.  There are m basic variables xb, and (n − m) nonbasic variables xnb.   
 
         (5-47) 
 
In theory the m constraint equations could be solved for the m basic variables in terms of the (n − 
m) nonbasic variables.  Indicating the solution of xb in terms of xnb from Equation 5-47 gives:  
 
        (5-48) 
 
 The names basic and nonbasic variables are from linear programming.  In linear 
programming the basic variables are all positive, and the nonbasic variables are all zero.  However, 
in nonlinear programming, the nonbasic variables are used to compute the values of the basic 
variables and are manipulated to obtain the optimum of the economic model.  
 
 The economic model can be thought of as a function of the nonbasic variables only that is 
if the constraint equations, Equation 5-48, are used to eliminate the basic variables i.e.  
 
        (5-49) 

  
Expanding Equation 5-49 in a Taylor series about xk and including only the first order terms 
gives:  
 

     (5-50) 

 
In matrix notation Equation 5-50 can be written as:  
 
     (5-51) 
  
 
This equation is comparable to Equation 5-45a.  
 
 A Taylor series expansion of the constraint equations, Equation 5-47, gives Equation 5-52 
that can be substituted into Equation 5-51 to eliminate the basic variables and have an equation 
only in terms of the nonbasic variables.  
 

fi (x) = fi (xb, xnb ) = 0 for i =1, 2,…,m

xi,b = f (xnb ) for i =1, 2,…,m

y(x) = y(xbxnb ) = y f (xnb ), xnb!
"

#
$=Y(xnb )

∂y(xk )
∂x j,bj=1

m

∑ dx j,b +
∂y(xk )
∂x j,nbj=m+1

n

∑ dx j,nb =
∂Y(xk )
∂x j,nbj=m+1

n

∑ dx j,nb

∇TY(xk )dxnb =∇
T yb (xk )dxb +∇

T ynb (xk )dxnb
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     (5-52) 

 
or in matrix form Equation 5-52 is:  
 

  (5-53) 

 
 
 The following equation defines Bb as the matrix of the first partial derivatives of fi 
associated with the basic variables, xb, and Bnb as the matrix associated with the non-basic 
variables, xnb, i.e.: 
 
          (5-54) 
  
 This is a convenient form of Equation 6-53 that can be used to eliminate dxb from 
Equation 6-51.  Solving Equation 6-54 for dxb gives:  
 
          (5-55)  
 
Substituting Equation 5-55 into Equation 5-51 gives:  
 
   (5-56) 
 Eliminating dxnb from Equation 5-56, the equation for the reduced gradient sTY(xk) is 
obtained.  
 
    (5-57) 
 
 Knowing the values of the first partial derivatives of the economic model and constraint 
equations at a feasible point, the generalized reduced gradient can be computed by Equation 5-57.  
This will satisfy the economic model and the constraint equations.  The generalized reduced 
gradient is used to locate better values of the economic model in the same way unconstrained 
gradient search was used, i.e.  
 
      (5-
58)   
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dxb = −Bb
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xnb = xk,nb +α ∇Y(xk )



	 218	

	
where α is the parameter of the line along the reduced gradient.  A line search on α is used to locate 
the optimum of Y(xnb) along the generalized reduced gradient line from xk.  
 
 In taking trial steps as α is varied along the generalized reduced gradient line, the matrices 
Bb and Bnb must be evaluated along with the gradients syb(xb) and synb(xk).  This requires 
knowing both xnb and xb at each step.  The values of xnb are obtained from Equation 5-58. However, 
Equation 5-48 must be solved for xb; and frequently, this must be done numerically using the 
Newton-Raphson method.  As pointed out by Reklaitis et al. (15) most of the computational effort 
can be involved in using the Newton-Raphson method to evaluate feasible values of the basic 
variables, xb, once the nonbasic variables have been computed from Equation 5-58.  The Newton-
Raphson algorithm in terms of the nomenclature for this procedure is given by the following 
equation.  
 
     (5-59) 
 
where the values of the roots of the constraint equations, Equation 6-47, are being sought for xb,  
having computed xnb from Equation 5-58.  Thus, the derivatives computed for the generalized 
reduced gradient Bb matrix can be used in the Newton - Raphson root seeking procedure also. 
  
 The following example illustrates the generalized reduced gradient algorithm.  It is a 
modification and extension of an example given by Reklaitis, et al. (15).  
 
Example 5-11 (15)  
 
Solve the following problem by the generalized reduced gradient method starting at point xo 
(0,0).  The constrained minimum is located at (1.2, 1.6) as shown in Figure 5-7.  
  

minimize: −2x1 − 4x2 + x12 + x22 + 5  
  

subject to:      −x1 + 2x2  ≤  2  
        

    x1 +   x2  ≤  4  
 

xi+1,b = xi,b − Bb
−1 f (xi,b, xnb )
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Solution: The problem is placed in the generalized reduced gradient format, Equation 5-44.  
  

minimize:    y  = −2x1 − 4x2 + x12 + x22 + 5  
  

subject to:   f1  =  − x1 + 2x2 + x3           − 2 = 0  
  
          f2  =     x1 +   x2           + x4 − 4 = 0  
 
where x3 and x4 have been added as slack variables.   
 
To begin x1 and x2 are selected to be basic variables, and x3 and x4 to be nonbasic variables, 
although others could be selected.  The equation for the generalized reduced gradient is Equation 
5-57 and for this problem is:    
 

Figure 5-7 Diagram of the Solution of the Multivariable Optimization Problem 
in Example 5-11 by the Generalized Reduced Gradient Method
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Computing the values of the partial derivative gives:  
 
 ∂y = -2 + 2x1  ∂f1 = -1 ∂f1 = 2  ∂f1 = 1  ∂f1 = 0 
 ∂x1          ∂x1  ∂x2  ∂x3  ∂x4  
 
 ∂y = -4 + 2x2  
 ∂x2           
      
 ∂y = 0   ∂f2 = 1  ∂f2 = 1  ∂f2 = 0  ∂f2 = 1 
 ∂x3   ∂x1  ∂x2  ∂x3  ∂x4  
  
 ∂y = 0  
 ∂x4  
 
The generalized reduced gradient equation becomes:  
 

  

 
where  
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The equation for the generalized reduced gradient through x0 (0,0) is:  
 

  

 
The generalized reduced gradient line through starting point x0 (0, 0, 2, 4) is given by Equation 
5-59 and for this example is: 
  
    x3 = 2 + 2/3 α  
 
    x4 = 4 + 8/3 α  
 
A line search is required.  The equations for x1 and x2 are needed in terms of x3 and x4 to be able 
to evaluate dy/dα since y = y(x1, x2).  Solving the constraint equations for x1 and x2 in terms of x3 
and x4 gives:  
     

x2 = −1/3 (x3 +   x4) + 2 
  

    x1 =   1/3 (x3 − 2x4) + 2  
 
Substituting to have x1 and x2 in terms of α gives:  
 
  x2 = −1/3 (2 + 2/3 α + 4 + 8/3 α) + 2 = −10/9 α  
 
  x1 =   1/3 [2 + 2/3 α − 2(4 + 8/3 α)] + 2 = −14/9 α  
 
Substituting into y gives:  
 
  y = −2 (−14/9)α − 4(−10/9)α + (−14/9 α)2 + (−10/9 α)2 + 5  
   

y = 68/9 α + 296/81 α2 + 5  
 
Locating the minimum along the reduced gradient line:  
 

          

    
Solving for x1, x2, x3 and x4 gives:  
 
   x1 = 1.608  x3 = 1.311  
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x2 = 1.149  x4 = 1.243  
 
The location of point x1 (1.608, 1.149, 1.311, 1.243) is shown in Figure 5-7.  Also, the constraint 
equations are satisfied.   
 
Now, repeating the search starting at x1 gives the following equation for the reduced gradient. 
 

 

 
The equations for x1, x2, x3 and x4 in terms of the parameter of the reduced gradient line are now 
computed as:  
 
    x3 = 1.311 + 0.973α  
 
    x4 = 1.243 − 0.243α  
 
    x1 = 1.61 + 0.486α  
 
    x2 = 1.149 − 0.243α  
 
Using the above equations, the minimum along the reduced gradient line is located by an exact 
line search.  
 
 y = −2(1.61 + 0.486α) − 4(1.149 − 0.243α) + (1.61 + 0.486α)2 + (1.149 − 0.243α)2 + 5  
 
Setting dy/dα equal to zero and solving for α gives:  
 
    α = − 1.705  
 
With this value of α, the values for x1, x2, x3 and x4 are:  
 
    x1 = 0.781  
 
    x2 = 1.563  
 
    x3 = −0.348   
 
    x4 = 1.657  
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The point x2 (0.781, 1.563, −0.348, 1.657) is an infeasible point as shown in Figure 5-7.  The first 
constraint is violated (x3 = −0.348).  This constraint is active, an equality; and the value of α has 
to be reduced to have the slack variable x3 be equal to zero, i.e.  
 
   0 = 1.311 + 0.973α  
    

α = -1.347  
 
Recalculating x1, x2 and x4 for α = −1.347 gives: 
  
   x1 = 0.955  
 
   x2 = 1.476  
 
   x4 = 1.57  
 
The point to continue the next reduced gradient search is x2 = (0.955, 1.476, 0, 0.157).  
 
Now ∂f1/∂x3 = 0 in the reduced gradient equation since the first constraint is an equality (x3 = 0).  
The reduced gradient equation at x2 becomes:  
 

 

 
Reduced gradient line is determined as was done previously:  
   

x4 = 1.57 + α(0.409)  
 
   x3 = 0  
 
   x1 = 0.953 − 0.273α  
 
   x2 = 1.477 − 0.136α 
 
In this case the reduced gradient line search will be along the first constraint, since it is now an 
equality constraint (x3 = 0).  
 
Solving for the optimal value of α gives:  
 

y = −2(0.953 − 0.273α) − 4(1.477 − 0.136α) + (0.953 − 0.273α)2 + (1.477 − 0.136α)2 + 5  
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Setting dy/dα = 0 gives α = - 0.890.  Then solving for x1, x2 and x4 gives:  
 
  x4 = 1.57 − 0.890(0.409) = 1.20  
 
  x1 = 0.953 − 0.273(−0.890) = 1.20  
 
  x2 = 1.477 −0.136(−0.890) = 1.60  
 
The point x3 (1.20, 1.60, 0, 1.20) from the reduced gradient search is the minimum of the function 
as shown in Figure 5-7.  
 
A summary of the steps is as follows:  
 
  x0 = (0, 0, 2, 4)  
 
  x1 = (1.608, 1.149, 1.311, 1.243)  
 
  x2 = (0.781, 1.563, −0.348, 1.657)  infeasible  
 
  x2 = (0.955, 1.476, 0, 1.57)   reducing α to have x3 = 0  
 
  x3 = (1.2, 1.6, 0, 1.2)  
 
The point x3 (1.20, 1.60, 0, 1.20) is the minimum of the function as shown in Figure 5-7.  
  
 The texts by Reklaitis et al. (15), Himmelblau (8) and Avriel (9) are recommended for 
information about additional theoretical and computational details for this method.  These include 
procedures to maintain feasibility, i.e. the GRG, GRGS and GRGC versions, stopping criteria, 
relation to Lagrange multipliers, treatment of bounds and inequalities, approximate Newton - 
Raphson computations, and use of numerical derivatives, among others.  
 
 In the first comprehensive comparison of nonlinear programming codes was conducted by 
Colville (21), and the generalized reduced gradient method ranked best among 15 codes from 
industrial firms and universities in this country and Europe. This algorithm has been a consistently 
successful performer in computer programs implementing it to solve industrial problems.  Lasdon 
(2) reported that he has a GRG code available for distribution (Professor L. S. Lasdon, School of 
Business Administration, University of Texas, Austin, Texas 78712), and this article lists several 
other sources of GRG codes. 
 
 Penalty, Barrier and Augmented Lagrange Functions: These methods convert the 
constrained optimization problem into an unconstrained one.  The idea is to modify the economic 
model by adding the constraints in such a manner to have the optimum be located and the 
constraints be satisfied.  There are several forms for the function of the constraints that can be 
used.  These create a penalty to the economic model if the constraints are not satisfied or form a 
barrier to force the constraints to be satisfied, as the unconstrained search method moves from the 
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starting point to the optimum.  This approach is related to the method of Lagrange multipliers, 
which is a procedure that modifies the economic model with the constraint equations to have an 
unconstrained problem.  Also, the Lagrange function can be used with an unconstrained search 
technique to locate the optimum and satisfy the constraints.  In addition, the augmented Lagrange 
function combines a penalty function with the Lagrange function to alleviate computational 
difficulties associated with boundaries formed by equality constraints when the Lagrange function 
is used alone.  
 
 These penalty function type procedures predate the previously discussed methods and have 
been supplanted by them.  They have proved successful on relatively small problems, but the newer 
techniques of successive linear and quadratic programming and generalized reduced gradient were 
required for larger, industrial-scale problems.  However, the newer techniques have incorporated 
these procedures on occasions to ensure a positive definite Hessian matrix and to combine the 
equality constraints with the profit function, which then leaves only the inequalities as constraints. 
The following paragraphs will review and illustrate these methods since they are used in 
optimization codes and as additions to the newer methods.  More details are given in the texts by 
Avriel (9), Reklaitis, et al. (15), and Gill, et al. (6) and in the review by Sargent (33).  
 
 The penalty function concept combines two ideas.  The first one is the conversion of the 
constrained optimization problem into an unconstrained problem, and the second is to have this 
unconstrained problem's solution be one that forces the constraints to be satisfied.  The constraints 
are added to the economic model in a way to penalize movement that does not approach the 
optimum of the economic model and also satisfy the constraint equations.  The optimization 
problem can be written with equality and inequality constraints as:  
  
  minimize: y(x)        (5-60) 
  

 subject to:   fi(x) = 0 for i = 1, 2, ..., h  
    

 fi(x) ≥ 0 for i = h + 1, ..., m  
 
 By combining the economic model and constraint equations, we can form a penalty 
function as follows:  
 
   P(x, r) = y(x) + F[r, f(x)]  (5-61) 
 
The term F[r, f(x)] is a function notation that includes the constraint equations and a penalty 
function parameter r as variables.  
 
 Various forms of this function F have been suggested and used with various degrees of 
success.  Some of these forms are given in Table 5-1.  Referring to the table we see that these 
functions are of two types, interior and exterior penalty functions.  The interior penalty function 
requires a feasible starting point, and each step toward the optimum is a feasible point.   An 
example of an interior penalty function with an economic model subject to inequality constraints 
is:  
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       (5-62) 

 
Table 5-1.  Some Forms for the Function F used to Construct the Penalty Function (9,15,26,35)  
 
Interior penalty function forms for inequality constraints (require feasible points and also are 
called barrier functions), (fi(x)>0): 
 
  r/fi(x)     r/[fi(x)]2  
 
  r ln[fi(x)]    r│fi(x)│if fi(x) < 0, otherwise 0 

 
Exterior penalty function forms for equality constraints fi(x)=0  
 
  |fi(x)|/r     [fi(x)]2 /r 
 
  [fi(x)]2M/r  (M appositive integer) [fi(x)]2 /r1/2 

 
   
Exterior penalty function forms for inequality constraints (feasible points are not required):  
 
   r[f1(x)]2  if  fi(x) < 0, otherwise 0  
 
   Constraint xj on: lj ≤ xj ≤ uj    
 

    

 
 
An augmented Lagrange function:  
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  Interior penalty functions are applicable only to inequality constraints, and the term in 
Equation 5-62 with the constraints will increase as feasible points approach the boundary with the 
infeasible region.  Consequently, the function P(x, r) will appear to encounter a barrier at the 
boundary of the feasible region.  Therefore, interior penalty functions are called barrier functions, 
also.  The other forms of the interior penalty function shown in Table 5-1 can be used equally as 
well as the one used for illustration in Equation 5-62. 
 
 The parameter r in Equation 5-62 and Table 5-1 is used to ensure convergence to the 
optimum and have the constraint equation be satisfied.  Initially, it has a relatively large value 
when the search is first initiated.  Then, the search is repeated with successively smaller values of 
r to ensure that the penalty term goes to zero, and at the optimum P(x, r −> 0) = y(x).  This 
procedure will be illustrated subsequently.  The value of r can be selected by trial and error, and 
normally a satisfactory starting value will be between 0.5 and 50 according to Walsh (26).  Also, 
Walsh (26) reported a formula to compute the value of r, which involves evaluating the Jacobian 
matrix of the economic model and the Jacobian and Hessian matrices of the F function at the 
starting point. 
 
 Exterior penalty function forms start at a feasible point; and they can continue toward the 
optimum, even though infeasible points are generated.  An example of an exterior penalty 
function is:  
 

     (5-63) 

 
In this form infeasible points may be generated as the unconstrained search method moves.  
Convergence is obtained using the parameter r, and a feasible and optimal solution will be 
obtained.  
 
 Exterior penalty functions used for equality constraints can be combined with interior 
penalty functions for inequality constraints to have what is referred to as mixed interior-exterior 
penalty functions.  The one used successfully by Bracken and McCormick (36) has the form: 
 

     (5-64) 

 
 The following example illustrates that the penalty parameter r must go to zero to arrive at 
the optimal solution.  After this example, the results of Bracken and McCormick (36) will be 
summarized to illustrate the procedure of using an unconstrained search technique with a penalty 
function to locate the optimum of the constrained problem.  
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 Example 5-12 (37) 
 
Form the exterior penalty function for the following problem using the penalty parameter r, and 
use the classical theory of maxima and minima to locate the minimum.  The result will include the 
parameter r.  Show that it is necessary to have r go to zero for the optimal solution of the 
unconstrained problem (penalty function) to be equal to the optimal solution of the original 
constrained problem.  
 
   minimize:  2x12 + 3x22  
     
   subject to:  x1 + 2x2 = 5  
 
The penalty function is:  

 
P(x1, x2, r) = 2x12 + 3x22   +  (1/r) [x1 + 2x2 − 5]2  

 
Setting the first partial derivative with respect to x1 and x2 equal to 0 gives:  
 
   ∂P = 4x1 + 2 [x1 + 2x2 − 5] = 0  
   ∂x1             r   
 
   ∂P = 6x2 + 4 [x1 + 2x2 − 5] = 0  
   ∂x2             r  
 
Solving for x1 and x2 gives:  
 
   x1 =     15       x2 =    20    _      
                                 11 + 6r          11 + 6r  
 
To have the optimal solution of the penalty function be equal to the optimal solution of 
constrained problem r must be zero, i.e.,  
 
   x1 = 15/11   x2 = 20/11  
 
A solution using Lagrange multipliers will give these results, also.  
 
 When a search technique is used, a value of r must be selected which is sufficiently large 
to allow movement toward the optimum.  As the optimum is approached successively smaller 
values of r must be used to have the optimum of the penalty function approach the optimum of the 
constrained problem.  Bracken and McCormick (36) have illustrated this procedure by solving the 
problem shown in Figure 5-8.  For this problem, a mixed penalty function was selected in the form 
of Equation 5-64.  
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Figure 5-8. The Use of a Penalty Function to Converge to the Optimum of a Constrained Problem 
by Bracken and McCormick (36).  
  
Constrained problem:  
 
  minimize:           (x1 − 2)2 + (x2 − 1)2  = y  
 
  subject to:      −x12/4   −  x22 + 1   ≥ 0  
 
         x1          − 2x2  + 1  = 0  
 
 Unconstrained mixed penalty function problem:  
 

 minimize: (x1 − 2)2 + (x2 − 1)2 + r[−x12/4 − x22 + 1]-1 + r-1/2 [x1 − 2x2 + 1]2  
 
 Optimal solution using SUMT program: 
 
        r                        x1              x2            y         

1.0   0.7489  0.5485  1.7691  
  4.0   x 10-2  0.8177  0.8323  1.4258  
  1.6   x 10-3  0.8224  0.8954  1.3976  
  6.4   x 10-5  0.8228  0.9082  1.3942  
  2.56 x 10-6  0.8229  0.9113  1.3935  
  1.024 x 10-7  0.8229  0.9113  1.3935  
  4.096 x 10-9  0.8229  0.9113  1.3935  
  

Starting point was x0 (2,2) with r = 1.0 
 

 
Analytical solution x*[(−1 + √7)/2 = 0.8229, (1 + √7)/4 = 0.9114] and y(x*) = 1.3935 
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 For the unconstrained problem to represent the constrained problem and have the same 
solution at the optimum, i.e. P(x*, r) = y(x*), the following conditions must be satisfied:  
 

        (5-65) 

  
 The computational effort required to meet the requirements of Equation 5-65 is illustrated 
by the problem given in Figure 5-8.  The search technique SUMT began at starting point x0 (2, 2) 
and arrived at the apparent optimum (0.7489, 0.5485) with a value of r = 1.0.  The search technique 
was started again at point (0.7489, 0.5485) using a value for r of 4.0 x 10-2 to arrive at the apparent 
optimum (0.8177, 0.8323) as shown in the table in Figure 5-8.  This procedure was repeated 
continually reducing the value for r until an acceptable result was obtained for x1 and x2.  In this 
case, the values from one optimal solution to the next agreed to within four significant figures.  At 
this point, the value of r had decreased to 4.096 x 10-9, practically zero for the problem.  
 
 In summary, significant computational effort is required to ensure that the solution of the 
penalty function problem approaches the solution to the constrained problem.  For the illustration, 
the optimization problem was solved seven times as r went from 1.0 to 4.096 x 10-9 to have a 
converged solution of the unconstrained problem to the constrained one.  This is typical of what is 
to be expected when penalty functions are used.  
 
 The conventional penalty function method obtains the optimal solution only at the limit of 
a series of solutions of unconstrained problems (33).  Consequently, exact penalty functions have 
been proposed that would give the optimal solution in one application of the unconstrained 
algorithm.  Several exact penalty functions have been constructed (33); but their use has been 
limited since they contain absolute values that are not differentiable.  
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 A procedure corresponding to the penalty function method has used the Lagrange function.  
The Lagrange function is formed as indicated in Equation 5-66 where the slack and surplus 
variables have been used for the inequality constraints.  
 

         (5-66) 

 
In this situation an initial estimate is made for the Lagrange multipliers, and the unconstrained 
problem given by Equation 5-66 is solved for an apparent optimum, x.  However, this value of x 
usually does not satisfy the constraints; and the estimated values of the Lagrange multipliers are 
adjusted to give a new unconstrained problem that is solved again for the apparent optimum.  This 
procedure is repeated until the optimum is located, and the constraints are satisfied.  Methods have 
been developed to estimate the values of the Lagrange multipliers (33) for this procedure.  The 
following simple example illustrates this idea of having to resolve the unconstrained optimization 
problem with various values of the Lagrange multipliers until the constraints are satisfied.  
 
Example 5-13 
 
Form the Lagrange function for the following constrained problem and solve it by analytical 
methods for values of the Lagrange multiplier of −1/2, −1.0 and −2.0.  Compare these results with 
the analytical solution of x1 = x2 = √(2)/2 and λ = −√(2)/2.  
   

maximize: y = x1 + x2  
   

subject to: f = x12 + x22 − 1 = 0  
 
The Lagrange function is:  
 
  L (x1, x2, λ) = x1 + x2 + λ (x12 + x22 −1)  
 
Using λ = -1 the Lagrange function becomes:  
 
   L (x1, x2) = x1 + x2 + (-1) (x12 + x22 − 1)  
 
Solving by analytical methods gives x1 = 1/2, x2 = 1/2; and using these values in the constraint 
gives:  
 
  f = (1/2)2 + (1/2)2 − 1 = −1/2 ≠  0  
 
The other values are determined in a similar fashion, and the following table summarizes the 
results.  

L(x,λ) = y(x)+ λi fi (x)
i=1

m

∑
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    λ          x1             x2           f                              
      

−1/2   1   1   1  
 

   −√(2)/2 −√(2)/2 √(2)/2   0  
 
   −1   1/2   1/2  −1/2  
 
   −2   1/4   1/4  −7/8  
 
 
The value of the Lagrange multiplier goes from −1 to −1/2 as the value of f goes from −1/2 to 1 
with the value of f = 0 (constraint satisfied) at λ = −√(2)/2.  
 
 Using the Lagrange function is similar to using the penalty function in converting a 
constrained problem into an unconstrained one in the sense that the problem has to be resolved 
until the unconstrained problem has converged to the solution of the constrained one.  There 
appears to be a disadvantage in using the Lagrange function because a set of Lagrange multipliers 
(one for each constraint) has to be adjusted while only one penalty parameter is required.  However, 
it turns out that there are difficulties in implementing penalty functions including discontinuities 
on the boundaries of the feasible region (11), the Hessian matrix of the penalty function can 
become ill conditioned (9) and the distortion of contours as r grows smaller (15).  Also, it has been 
found that using the Lagrange function alone has been relatively unsuccessful especially for large 
problems (8), except when the constraints are linear (38).  
 
 Combining penalty functions and Lagrange multipliers has proved more successful, and 
this technique is called the augmented Lagrange method or the method of multipliers (6, 9, 15), 
and the relation between the penalty parameter and the Lagrange multipliers has been reported (9, 
28).  The augmented Lagrange function can be written as follows (11).  
 

       (5-67) 

 
and an algorithm for updating the Lagrange multipliers has been given by Avriel (11).  
  
  λi,k+1 = λi,k - r fi(xk)        5-68) 
  
 Avriel (11) has given an example of the use of this procedure for a simple problem.  There 
have been difficulties associated with this method in the choice of the penalty parameter r.  As 
discussed by Gill, et al. (6), too small a value can lead to an unbounded number of unconstrained 
searches having to be performed, in addition to a possible ill-conditioned Hessian matrix of the 
Lagrange function.  As will be seen in the section on comparison of techniques, these methods 
have not performed as well as successive linear and successive quadratic programming and the 
generalized reduced gradient method.  

M(x,λ, r) = y(x)+ λi fi (x)
i=1

h

∑ + r fi (x)[ ]2
i=h+1

m

∑
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 Other Multivariable Constrained Search Methods: Other methods for constrained 
multivariable problems fall into a class referred to as feasible directions, projection methods or 
methods of restricted movement.  Also, there are random search procedures, cutting plane methods 
and feasible region elimination techniques.  The concepts associated with each of these procedures 
are described and references given for sources of more information.  These techniques have 
founded limited application, and the reasons for this are described.  
 

Restricted Movements:  These methods are described in some detail by Avriel (9, 11) and 
others (6, 8, 15, 27).  According to Reklaitis et al. (15) even though there are similarities between 
these projection methods and reduced gradient techniques, the latter are preferred because sparse-
matrix methods can be used but the former methods are said to have "sparsity-destroying matrix 
products."  Consequently, the details of these methods are available in the previously cited 
references, and only an illustration from McMillan (27) will be given to show some of the concepts 
involved.  
 
 A simple problem is shown in Figure 5-9 where the starting point is in the feasible region 
at point x0 (8, 2).  There are three constraints that bound the feasible region, and the unconstrained 
maximum lies outside of the region.  This gradient-projection method begins by a single variable 
search along the gradient line to locate a maximum.  The maximum along the line will be found 
where a constraint is encountered at point x1(6.6, 3.6).  The gradient line at point x1 points into the 
infeasible region.  Therefore, to continue to move toward the optimum, the gradient line is 
projected on the constraint, and the search proceeds in this projected-gradient direction along the 
constraint.  The constraint is linear, and a single variable search for the maximum locates point x2 
(6,4) that is the intersection with another constraint.  The gradient line at x2 (6, 4) points into the 
infeasible region so it is projected on the constraint, in this case x2 = 4; and the single variable 
search for the maxima continues.  The search arrives at point x3 (5.5, 4), which is the constrained 
maximum.  
 
 In summary, the procedure began with an unconstrained search method, gradient search, 
until a constraint was encountered.  The unconstrained search line was projected on the constraints 
to be able to stay in the feasible region, and it moved until the maximum was located.  Other 
unconstrained search methods could have been used rather than gradient search, such as the BFGS 
method.  Also, had the constraints been curved, the search method would have difficulty following 
the constraint; and a hemstitching pattern would have developed as the search method attempted 
to follow the active nonlinear constraint.  This pattern is illustrated in Figure 5-10 and it is one of 
the problems encountered with this method, as discussed by Avriel (9).  
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Figure 5-9 Illustration of the Gradient Projection Method, after McMillian (27)

Figure 5-10 Hemstitching Pattern Developed by Restricted Movement Methods 
Following an Active Constraint, after Avriel (9)
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 Cutting Plane Methods:  In these methods (15, 28), the nonlinear optimization problem 
is formulated as follows.  Beginning with the nonlinear optimization problem as:  
 
  minimize: y(x)         (5-69) 
   

subject to: fi(x) ≥ 0     for i = 1, 2, ..., m  
 
The problem is converted to the following one:  
  

minimize: x0  
  
  subject to: fi(x) ≥ 0        (5-70) 
 
        x0 - y(x) ≥ 0  
 
which gives a linear economic model.  Then, if a starting point is selected that violates only one 
of the constraints, this constraint can be linearized; and the resulting problem can be solved by 
linear programming.  At the new point, the most violated constraint is added, and linearized to find 
the third point in the search.  The procedure continues adding constraints until the optimum is 
reached and the constraints are satisfied.  However, a number of computational difficulties have 
been encountered with this procedure according to Avriel (9); but it has been attractive because 
convergence to the global optimum is guaranteed, if the economic model and constraints are 
convex functions.  
 
 Random Search:  In random search, the feasible region is divided into a grid where each 
nodal point is considered to be the location of a point to compute the value of the economic model, 
i.e. an experiment.  Then if an exhaustive search is performed by calculating the value of the 
economic model at each point in the grid, these experiments could be ranked from the one with 
the maximum value of the economic model to the one with the minimum value.  However, a 
specified number of these experiments could be selected randomly, and the value of the economic 
model evaluated at the points.  It would be possible to make a statement about the point with the 
largest value of the economic model being in a certain best fraction of all of the experiments with 
a specific probability.  For example, if there were 1000 nodal points, and if one experiment was 
placed randomly in these points, the probability of choosing one in the top 10% would be 100/1000 
= 0.1.  Also, the probability of not choosing one in the top 10% would be 1 - 0.1 = 0.9. (Probability 
is defined as the relative frequency of occurrences of an event.)  
 
 If two experiments were placed randomly in the grid on the feasible region, the probability 
of not finding one in the top 10% would be (0.9)2 = 0.81, and the probability of one of these two 
being in the top 10% is 1 − 0.81 = 0.19.  Continuing, after n trials the formula is:  
 
    p(0.1) = 1 − (0.9)n   (5-71) 
 
For n = 16, the probability of finding one of these 16 experiments to be in the best fraction of 0.1 
would be p (0.1) = 0.80.  For n = 44, p (0.1) = 0.99 which is almost a certainty.  
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 The generalization of this procedure, Wilde (10), is given by the following equation.  
 
    p (f) = 1 − (1 − f)n      (5-72) 
 
In this equation p (f) is the probability of finding at least one nodal point in the best fraction, f, 
having placed n experiments randomly in the feasible region.  Several values of n have been 
computed by Wilde (10) having specified f and p(f).  These are given in Table 5-2.  Equation 5-72 
was used in the following form for these calculations. 
  
    n = ln [1 − p(f)]/ln (1−f)     (5-73) 
  
 
Table 5-2.  The Number of Experiments, n, Required to Have at Least One in the Best Fraction, 
f, with a Probability, p(f), having a Total of 1000 Possible Experiments, after Wilde (10). 
 
 
        p(f)  
 
     f        0.80  0.90  0.95  0.99  
 

0.1   16   22   29   44  
 

  0.01  161  230  299  459  
 
  0.005  322  460  598  919  
 
 Referring to Table 5-2, 16 experiments would be required to have at least one in the top 
10% with a probability of 0.80 from a total of 1000 experiments.  To have at least one value of the 
economic model in the top 0.5% with a probability of 0.99, 919 experiments of the total of 1000 
would have to be measured, i.e. the economic model would have to be evaluated at almost all of 
the nodal points.  Also, it should be noted that the values for n reported in the table have been 
rounded off, e.g. 919 is 918.72... computed from Equation 5-73.  If there had been a total of 100 
experiments 92 would have been required for at least one in the top 0.5 % with a probability of 
0.99.  
 
 The number of nodal points is somewhat independent of the number of variables in the 
economic model.  Also, the results are independent of the number of local maxima or minima.  
These two facts are considered to be the important advantages of random search.  This has led to 
adaptive random search where a random search is conducted on part of the feasible region.  Then 
another section of the feasible region is selected which contained the largest value of the economic 
model to repeat the placing of another set of random measurements.  This converts random search 
into a search technique, and it has been called adaptive random search by Gaddy and co-workers 
(40, 41).  
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Using this technique Martin and Gaddy (41) have described the optimization of a maleic 
anhydrate process.  They showed that their adaptive randomly directed search method efficiently 
optimized the types of problems described as large, heavily constrained and often containing 
mixed integer variables.  

 
 Feasible Region Elimination Techniques:  These methods are described in some detail 
by Wilde and Beightler (12) and are an extension of the ideas associated with the interval 
elimination, single variable search methods.  Two techniques are contour tangent elimination and 
multivariable dichotomous elimination.  The first method is applicable only to functions that are 
strongly unimodal; and the second procedure requires that functions be rectangularity unimodal, 
which is more restrictive than strongly unimodal.  
 
 A strongly unimodal function has a strictly rising path from any point in the feasible region 
to the optimum.  Consequently, a function with a curving ridge would not be strongly unimodal.  
An example of a strongly unimodal function is given in Figure 5-11.  The line from point A to the 
maximum illustrates a strictly rising path.  
 
 The multivariable elimination technique is illustrated in Figure 5-11 for two independent 
variables.  First, a starting point, x0, in the feasible region is selected; and a contour tangent line is 
determined.  The area below the contour tangent can be eliminated since it does not contain the 
optimum; and the procedure continues by placing another experiment in the area that contains the 
optimum, e.g. point x1.  Measuring the contour tangent at x1, an additional region can be 
eliminated.  In this case it will be above the contour tangent line, and the region that contains the 
maximum is reduced.  Again, another measurement is placed in the remaining area that contains 
the optimum, e.g. x3; and the contour tangent is determined.  Eliminating the area to the left of this 
contour tangent, now the region that contains the optimum has been reduced to the triangular 
shaped area bounded by the three contour tangents as shown in Figure 5-11.  The procedure 
continues in this fashion until the region that contains the optimum has been reduced to a 
satisfactory size.  The details of the computational procedure are given by Wilde and Beightler 
(12), and the method has had limited use because of the restrictive requirement of being applicable 
only to strongly unimodal functions.  
 
 There are a number of other methods that could have been mentioned, all of which have 
had some degree of success in optimizing industrial problems, and these are described in the 
references at the end of this chapter.  Many of these methods are modifications and/or 
combinations of the procedures that have been discussed.  In the next section comparisons will be 
given of the performance of constrained multivariable procedures.  
 
 Comparison of Constrained Multivariable Search Methods:  The evaluation of the 
effectiveness of constrained multivariable optimization procedures depends on several interrelated 
things.  These are the optimization theory, the algorithm or the combination of algorithms to 
implement the theory, the computer program and programming language used for computations 
with the algorithms, the computer to run the program and the optimization problems being solved.  
In comparing constrained optimization procedures, usually the same optimization problems are  
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solved; and comparisons are based on measurements of computer time or the number of times the 
economic model and constraints are evaluated to come within a certain fraction of the optimum.  
If different computers are used to solve the optimization problems, then a timing program such as 
a matrix inversion is run on each machine to give a point of comparison among the computers.  
Consequently, if there is a superior optimization algorithm, the other factors that affect 
performance have made it difficult to detect.  
 
 There is debate about which algorithms and/or computer codes are the better ones, and 
Lasdon (3) recommended having available several computer codes that incorporate the more 
successful methods.  A judgment about the ones to have can be obtained from the following 
reviews of industrial experience reporting the use of optimization procedures on process and plant 
problems.  
 
 In an Exxon study by Simon and Azma (1) fifteen industrial optimization problems were 
solved using four established optimization codes, and their results are summarized in Table 5-3. 
The fifteen problems had from 5 to 250 variables; and there were a number of active constraints 
at the optimum, ranging for each size problem from 50 to 95% of the number of variables. 
 

Figure 5-11 Illustration of the Method of Contour Tangents, after Wild and Beightler (12)
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 Two of the four optimization codes, ECO and SLP, were developed by Exxon.  The ECO 
program used successive quadratic programming with many of the features described previously 
for the Wilson, Han, Powell algorithm including a Davidon, Fletcher, Powell update for the 
Hessian matrix.  The SLP program used successive linear programming as described previously 
with enhancements to speed convergence and circumvent problems with infeasibilities.  The 
GRG2 program used the generalized reduced gradient method, and this program was developed 
by Lasdon (3).  The MINOS program used a projected augmented Lagrange algorithm combined 
with the generalized reduced gradient algorithm, and this program was developed by Murtagh and 
Saunders (43).   
 
 The problems were run on Exxon's IBM 3033 computer, and the key results extracted from 
the article are given in Table 5-3.  These include the average and range of the number of function 
calls and the average CPU time used.  The optimization applications were complex simulations, 
and numerical differentiation was required.  Consequently, the number of times that the economic 
model and constraints were evaluated (function calls) was viewed as the primary indicator of 
performance.  CPU times were said to be a guide to performance and were not available for SLP 
optimizations.  Also, two termination criteria were used in the various convergence tests of the 
programs to have the value of the economic model and constraints to be within the tolerance of 
0.001 and the economic model to be until 0.1% of the optimum. 
 
 In reviewing the results in Table 5-3, SLP and MINOS solved all of the test problems.  It 
was reported by Simon and Azma (1) that the performance of SLP was better on more tightly 
constrained problems.  Also, they reported that MINOS had impressively fast run times from the 
use of sparse matrix computational features.  The GRG2 code solved all of the 5- and 20-variable 
problems and three of the six 100- variable problems.  This code required the greatest number of 
function calls compared to the others.  The ECO code solved all of the 5- and 20- variable 
problems, the two 100-variable, linearly constrained problems and one of the 100-variable, 
nonlinearly constrained problems.  It was reported that nonlinear constraints caused numerical 
difficulties for the ECO code, because it did not contain special error checking and matrix inversion 
features of the other codes.  
 
 This study has shown that to solve large industrial problems these three optimization 
algorithms must be supplemented with other features associated with numerical differentiation and 
sparse matrix manipulations.  In the following review of other comparison studies of optimization 
codes, the three procedures, SLP, SQP and GRG, were found to be superior to others, and the 
relative merits of these methods have been tabulated by Lasdon and Warren (22).   
 
 Successive linear programming (SLP) was said to be easy to implement, widely used in 
practice, rapidly convergent when the optimum is at a vertex, and it was able to solve very large 
problems.  Furthermore, it did not attempt to satisfy equalities at each iteration, may converge 
slowly on problems with non-vertex optimum and will violate nonlinear constraints until 
convergence is reached.   
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Table 5-3 Comparisons of ECO, GRG2, MINOS and SLP from the Exxon Evaluation Using 29 
Optimization Problems from Simon and Azma (1). 
 
Optimization Problems  Average Number of Function Calls (Range) 
Number of Variables     CPU Seconds  
(Number of Problems)         ECO         GRG2          MINOS            SLP                   
 
Convergence tolerance of 0.001        
   
5 variables (7)    32(23-47) 87(33-203)      33(15-49)        73(44-94)  
            0.17         0.14          0.28          NR*  
 
20 variables (12)   43(29-67)       537(475-672)       166(46-263)     181(111-
261)                     5.0           3.0               0.95         NR  
 
100 variables (2)   51(50 & 52) 445(1 problem)    48(46 & 50)   69(57-80)  
linear constraints          42.0       332.0           1.8         NR  
 
100 variables (4)   Failed  2005(445 & 5225) 145(NR)        103(NR)  
nonlinear constraints                          (2 problems only)   
           983.0  2.8         NR  
 
250 variables (4)   Not Run Not Run    881(747-1073)  131(105-
181)  
             25.0             NR  
Convergence to 0.1% of optimum  
    
5 variables (7)    16(12-24) 73(25-174)         23(15-29)       22(12-34)  
                 0.1            0.1    0.2          NR  
 
20 variables (12)   29(18-57) 486(311-647)        145(44-252)   131(62-
229)  
             3.7          2.5   0.8          NR  
 
100 variables (2)   25(21 & 28) 397(1 problem)     47(46 & 48)    19(14-24)  
linear constraints         25.0      289.0  01.8          NR  
 
100 variables (4)   Failed  1682(606 & 2758) 162(82-208)    47(20-76)  
nonlinear constraints     (2 problems only)   
              44.60   2.7          NR  
 
250 variables (4)   Not Run Not Run      841(714-1062)   83(47-
175)  
*NR - Not Reported        24.0           NR  
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 Successive quadratic programming (SQP) is said to require the fewest function and 
gradient evaluations of the three methods.  It did not attempt to satisfy equalities at each iteration 
and will violate nonlinear constraints until convergence is reached.  It is more difficult to 
implement than SLP and requires a good quadratic programming solver.   
 
 Generalized reduced gradient (GRG) is said to be probably the most robust and versatile, 
being able to employ existing process simulators using the Newton-Raphson method.  It is the 
most difficult to implement and needs to satisfy equality constraints at each step of the algorithm.  
 In a dissertation by Sandgren (20) on the utility of nonlinear programming algorithms, 35 
optimization algorithms were collected from university and industry sources of which 29 used 
penalty functions, four used generalized reduced gradient (GRG) and two used successive linear 
programming (SLP).  Thirty test problems were selected from a variety of applications and sources 
that had from 2 to 48 variables and 4 to 75 constraints.  Computations were performed on Purdue 
University's CDC 6500 computer in double precision, and all gradients were calculated using a 
forward difference approximation.  Solution times were measured, and a rating procedure was 
used to rank the programs.  The results showed that the four codes using the GRG algorithm and 
one code using SLP solved 50% of the test problems using 25% or less of the computer time 
averaged for all of the programs.  This study established fairly conclusively that GRG and SLP 
algorithms are superior to penalty function methods. 
 
 In a study by Schittkowski reported by Reklaitis, et al. (15) 22 optimization programs and 
180 test problems were evaluated.  The optimization program included 11 SLP, 3 GRG, 4 SQP 
and 4 penalty function codes; and nine criteria were used and weighted to rank the programs.  The 
ranking of the algorithm classes were in the order of SQP, GRG, and SLP with penalty functions 
last.  Also, it was emphasized that these tests showed that code reliability is more a function of the 
programming of the algorithm than the algorithm itself.  
 

In probably the first comprehensive study of nonlinear constrained optimization 
procedures, Colville (21) organized participants from fifteen industrial firms and universities and 
had them test eight industrial problems with their 30 optimization codes.  He grouped the methods 
into five categories and developed a scoring procedure.  This involved using a timing program for 
matrix inversion since the results were obtained from a number of different computers.  The highest 
score was received by the GRG method.    

 
 Himmelblau (8) extended these results and ran some of Colville's and other problems on 
the same computer.  Again, the GRG code was the best performer.  However, Palacios-Gomez et 
al. (47) have shown that their improved version of SLP based on industrial computational 
experience was comparable to or better than GRG2 and MINOS on Himmelblau's and other test 
problems.  
 Successive quadratic programming and generalized reduced gradient algorithms have been 
used with large computer simulations and flowsheeting programs for optimal design.  Biegler and 
Hughes (44, 49) showed that successive quadratic programming was effective for optimization of 
a propylene chlorination process simulation.  In the previously mentioned study of Jirapongpham, 
et al. (42) it demonstrated that the WHP algorithm was effective for process flowsheeting 
optimization. Locke and Westerberg (45, 46) used an advanced quadratic programming algorithm 
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with an equation-oriented process flow-sheeting program with success. Chen and Stadtherr (48) 
reported enhancements of the WHP method that were effective on several chemical process 
optimization problems. Biegler and Cuthrell (53) showed the Armijo line search to be one of 
several improvements to successive quadratic programming.  Drud (58) has developed a GRG 
program CONOPT that used the industry standard MPS input format for large static and dynamic 
problems at the World Bank.  
   
 In summary, the three methods of choice for optimization of industrial scale problems are 
successive linear and successive quadratic programming and the generalized reduced gradient 
method.  The available programs that use these procedures are elaborate and use a combination of 
techniques for efficient computer computations.  Sources for programs using these methods are 
given by Waren and Lasdon (2), Reklaitis et al. (15) and Gill, et al. (6).  Waren and Lasdon (2) list 
the desirable features of nonlinear programming software that can be used as a guide for selection 
of codes.  

 The GAMS (General Algebraic Modeling System) programming language was developed 
by the GAMS Development Corporation 1217 Potomac Street, NW, Washington, D.C. 20007 
(http://www.gams.com).  GAMS is a high-level modeling language for mathematical 
programming and optimization. It consists of a language compiler and a stable of integrated high-
performance optimization programs called “solvers.” GAMS model types include Linear 
Programming (LP), Mixed-Integer Programming (MIP), Mixed-Integer Non-Linear Programming 
(MINLP), and different forms of Non-Linear Programming (NLP).   There are over 30 solvers 
(optimization codes) that can be selected to solve these programming problems.  GAMS is 
available for use on personal computers, workstations, mainframes and supercomputers.  Note, 
“programming,” means “scheduling” and not “computer programming.”   

  GAMS Distribution 26.1.0 (February 2, 2019) is currently available for download from 
the GAMS web site www.GAMS.com without charge.  GAMS will operate as a free demo system 
without a valid GAMS license.  The model limits in demo mode are 300 constraints and variables, 
2000 nonzero elements, (of which 1000 can be nonlinear), 50 discrete variables (including semi 
continuous, semi integer and member of SOS-Sets) with additional global solver limits of 10 
constraints and variables. There are the installation notes for Windows, Mac, and UNIX. The 
GAMS distribution includes the GAMS Manuals in electronic form, and hard copies can be 
ordered through Amazon. 
 
Stochastic Approximation Procedures 
 
 All of the procedures for deterministic processes can be confounded by random error.  
There are search techniques that converge to an optimum in the face of random error, and some of 
these will be discussed briefly following the approach of Wilde (10) who gives more details about 
these methods.  Random (e.g. experimental) error clouds the perception of what is happening and 
greatly hampers the search for the optimum.  Stochastic approximation procedures deal with 
random error as noise superimposed on a deterministic process.  Therefore, convergence to the 
optimum must be considered first, and then efficiency can be evaluated.  The works of Dvoretzky, 
Kiefer and Wolfowitz in this area have been summarized in an excellent manner by Wilde (10).  
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Consequently, only the most important of these techniques will be described.  This is the Kiefer-
Wolfowitz stochastic approximation procedure, and it is applicable for n independent variables.  
 
 With noise present a search technique is forced to creep to prevent being confounded by 
random error.  However, for unimodal functions, it can be shown that stochastic approximation 
procedures converge to the optimum in the mean square and with probability one (10).  
 
 The Kiefer-Wolfowitz algorithm is given by the following equation (similar to steep 
ascent).  Beginning at a starting point x0, the method proceeds according to this equation: 
 
 

  (5-74) 

 
For convergence, the parameters ak and ck must satisfy the following criteria  
 

          (5-75) 

 
The following example illustrates the use of the Kiefer-Wolfowitz procedure.  
 
Example 5-13 
 
Develop the procedure to obtain the minimum of a function of the form that is affected by 
experimental error. 
  
   Ax1(x1 - x1*)2 + Bx2(x2 - x2*)2  
 
The value of the minimum is somewhere on the interval: 
 
    1 ≤ x1* ≤ 3  1 ≤ x2* ≤ 3   
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Starting with the mid-point of the interval, give the equations for the second, third and last of 
twenty trials.  
 
Solution: ak = 1/k, ck = 1/k 1/4 satisfies the criterion of the Equation 5-75.  
 
For x2 = (x1, 2, x2, 2), k = 1:  
 

  

  
For x3 = (x1, 3, x2, 3), k = 2:  
 

  

 
For x20 = (x1, 20, x2, 20), k = 19:  
 

  

 
 There are variations of the above procedure such as using only the sign of the 
approximation to the derivatives.  This can be used effectively when there is difficulty with 
convergence that is being caused by the shape of the curve on either side of the optimum.  Also, a 
forward difference approximation can be used in evaluating the derivative rather than the central 
difference form, but convergence is not as rapid.  
 
Closure 
 
 In this chapter the important algorithms for optimizing a nonlinear economic model with 
nonlinear constraints have been described, and their performance has been reviewed.  This required 
presenting methods for unconstrained problems first and outlining the strategy required to move 
from a starting point to a point near an optimum.  It was not possible to discuss each of the many 
algorithms that have been proposed and employed as unconstrained multivariable search 
techniques, but the references at the end of the chapter will lead to comprehensive descriptions of 
those procedures.  The texts by Avriel (9), Fletcher (4, 5), Gill et al. (6), Himmelblau (8), 
McCormick (7) and Reklaitis et al. (15) are particularly recommended for this purpose.  However, 
the more successful algorithms were described for both unconstrained and constrained 
optimization problems.  It is recommended that the BFGS algorithm be used for unconstrained 
problems and a Fortran program for this procedure has been included at the end of the chapter, 
Table 5-4.  For constrained problems the three methods that have been more successful in 
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comparison studies on industrial problems are successive linear and quadratic programming (SLP 
and SQP) and generalized reduced gradient method (GRG).  Advanced computation techniques 
for numerical derivatives and sparse matrix manipulations are required to have efficient codes, and 
sources to contact for these types of programs were referenced. 
  
 In addition to deterministic optimization methods, stochastic approximation procedures 
were described briefly based on material from Wilde's book (10).  These methods are designed to 
locate the optimum in the face of experimental error, even though their movement is slowed to 
avoid being confounded by random and gross errors.  
 
 This area of optimization is probably the most rapidly growing part of the subject.  The 
growth of computers and applied mathematical techniques for the solution of large systems of 
equations promises to continue to allow significant developments to take place. 
  
Table 5-4.  FORTRAN Program with Sample Input and Output for BFGS Search of an 
Unconstrained Nonlinear Function 
 
C PROGRAM BFGS                                                     
C----------------------------------------------------------------------------------------------------------- 
C NOTATION :                                                         
C NTERM  : NO. OF INDEPENDENT VARIABLES IN THE COST FUNCTION         
C X    : INDEPENDENT VARIABLES                                     
C EPS     : STOPPING CRITERION ON COST FUNCTION                       
C ITER    : LOOP COUNTER                                              
C HESS    : HESSIAN MATRIX                                            
C K        : PARAMETER OF THE LINE SEARCHED                            
C-----------------------------------------------------------------------  
C  
 INTEGER ITER  
 DOUBLE PRECISION TOLER, FUNCT, FIBON,  
     1   HESS(20, 20), GRAD(20), GRAD1(20), GAMMA(20), DELTA(20),  
      2   HG(20), K, ERR, ERROLD, EPS, GPHG, DPG, X(20), S(20)  
C  
 COMMON X, S, NTERM  
C  
 ITER  = 0  
 K     = 0  
C-----------------------------------------------------------------------  
C READ AND ECHO INPUT DATA                                           
C-----------------------------------------------------------------------  
C  
 READ(5,*) NTERM, EPS  
 READ(5,*) ( X(I), I=1,NTERM)  
 WRITE(6,600) NTERM, EPS,( X(I), I=1,NTERM)  
 600  FORMAT(/,5X,'INPUT DATA :  ',  
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      &          /,5X,'NO. OF INDEPENDENT VARIABLES, NTERM  = ',I4,  
      &           /,5X,'STOPPING CRITERION, EPS                = ',F9.4,  
      &           /,5X,'STARTING POINTS, X                     = ',10(1X,F6.2))  
         WRITE(6,601)  
 601  FORMAT(/,5X,'RESULTS    :',  
      &          /,5X,'ITERATION',2X,'COST FUNCTION',6X,'VALUES OF X',12X,'  
      &K',/)  
C-----------------------------------------------------------------------  
C BFGS SEARCH                                                        
C-----------------------------------------------------------------------  
 ERR= FUNCT( X )  
 CALL PRINT ( ITER, NTERM, ERR, X, K)  
 CALL SLOPE( GRAD, ERR )  
C-----------------------------------------------------------------------  
C FORM THE IDENTITY MATRIX                                           
C----------------------------------------------------------------------   
 DO 40 I=1, NTERM  
    DO 40 J=1, NTERM  
  IF (I.NE.J) HESS(I,J)= 0.0  
  IF (I.EQ.J) HESS(I,J)= 1.0  
 40 CONTINUE  
 30 CONTINUE  
C  
 ERROLD= ERR  
 ITER= ITER + 1  
C-----------------------------------------------------------------------  
C S (I) = HESSIAN*GRADIENT                                            
C----------------------------------------------------------------------  
 DO 50 I=1, NTERM  
    S (I)= 0.0  
    DO 50 J=1, NTERM  
  S (I)= S(I) + HESS (I, J) * GRAD (J)  
 50  CONTINUE  
C-----------------------------------------------------------------------  
C K = ALPHA IN EQN.6-17                                              
C----------------------------------------------------------------------  
 K= FIBON(DUMMY)  
C-----------------------------------------------------------------------  
C DETERMINE NEXT X VALUE WITH EQN.6-17                               
C DELTA = ALPHA*HESSIAN*GRADIENT, IN EQN. 6-17                       
C----------------------------------------------------------------------  
 DO 60 I=1, NTERM  
    DELTA (I)= K * S (I)  
    X(I)= X(I) – DELTA (I)  
 60    CONTINUE  
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 ERR= FUNCT(X)  
 CALL SLOPE( GRAD1, ERR )  
C-----------------------------------------------------------------------  
C DETERMINE NEW BFGS MATRIX WITH EQN.6-20                            
C----------------------------------------------------------------------  
 DPG=0.0  
 DO 70 I = 1, NTERM  
    GAMMA (I)= GRAD1 (I) – GRAD (I)  
    DPG = DPG + GAMMA (I) * DELTA (I)  
 70    CONTINUE  
 DO 80 I=1, NTERM  
    GRAD (I) = GRAD1 (I)  
 80    CONTINUE  
 GPHG= 0.0  
 DO 90 I=1, NTERM  
    HG(I)= 0.0  
    DO 90 J=1,NTERM  
  HG (I) = HG (I) + HESS (I, J) * GAMMA (J)  
  GPHG = GPHG+ HESS (I, J) * GAMMA (I) * GAMMA (J)  
 90    CONTINUE  
 DO 100 I = 1, NTERM  
    DO 100 J = 1, NTERM  
  HESS (I, J) = HESS (I, J) - (HG (I) * DELTA (J) / DPG)  
     $                 - (DELTA (I) * HG (J) / DPG)  
     $                 + (1 + (GPHG / DPG)) * (DELTA (I)  
     $                 * DELTA (J) / DPG)  
 100    CONTINUE  
 TOLER = DABS (ERR - ERROLD)  
 IF (TOLER .GE. EPS) CALL PRINT( ITER, NTERM, ERR, X, K)  
 IF (TOLER .GE. EPS) GO TO 30  
 STOP  
 END  
C-----------------------------------------------------------------------  
C COMPUTATION OF PARTIAL DERIVATIVES                                 
C----------------------------------------------------------------------  
 SUBROUTINE SLOPE( DERIV, E )  
 DOUBLE PRECISION DERIV (20), E, DELTA, TEMPX, Y, X(20),S(20), FUNCT  
 COMMON X, S, NTERM  
C  
 DO 30 I=1, NTERM  
    DELTA= 1.0E-04  
    TEMPX= X(I)  
    X(I)= X(I) + DELTA  
    Y= FUNCT( X )  
    DERIV(I)= (Y - E)/DELTA  
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    X(I)= TEMPX  
 30    CONTINUE  
 RETURN  
 END  
C----------------------------------------------------------------------  
C PRINT RESULTS                                                      
C---------------------------------------------------------------------  
 SUBROUTINE PRINT( I, N, VAL, X, K)  
 DOUBLE PRECISION X(20), VAL, K  
 WRITE(6,600) I,VAL,(X(J),J=1,N), K  
 600 FORMAT(7X,I3,6X,F10.3,4X,10(1X,F7.3))  
 RETURN  
 END  
C----------------------------------------------------------------------  
C FIBONNACCI SEARCH FUNCTION                                         
C---------------------------------------------------------------------  
C LBOUND  : LOWER BOUND                                               
C HBOUND : UPPER BOUND                                              
C INTER  : INITIAL INTERVAL                                          
C FINTER : FINAL INTERVAL                                            
C RATIO   : RATIO OF INITIAL AND FINAL INTERVALS                      
C DELTA  : DISPLACEMENT OF AN EXPERIMENT FROM THE BOUNDARY,          
C       EQN.5-44, INITIALLY                                       
C FIBO    : FIBONNACCI NUMBERS                                        
C FACT   : FIBO(N+1)/FIBO(N-1)                                       
C---------------------------------------------------------------------  
 DOUBLE PRECISION FUNCTION FIBON( DUMMY )                                                                 
C  
 DOUBLE PRECISION RATIO, FIBO(50),  
    1 LBOUND, HBOUND, INTER, FINTER, DELTA, TESTLB,  
    2 TESTHB, TLBV, THBV, TEST, FACT, TLB, F  
 INTEGER EXPCNT, EXPNO, FLAG  
 LBOUND  = 0.0  
 TEST     = 1.0  
 HBOUND  = 1.0  
 FINTER  = 0.00001  
 FACT    = 1.618034  
C----------------------------------------------------------------------  
C DETERMINE THE INTERVALS OF THE FIBONNACCI SEARCH                  
C---------------------------------------------------------------------  
 10 CONTINUE  
 TLBV  = F( TEST )  
 THBV = F( HBOUND )  
 IF (TLBV.GT.THBV) GO TO 20  
    TLB  = TEST  
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    TEST= HBOUND  
    HBOUND = HBOUND * FACT  
    GO TO 10  
 20 CONTINUE  
C----------------------------------------------------------------------  
C DETERMINE BOUNDS AND DELTA FOR FIBONNACCI SEARCH                   
C---------------------------------------------------------------------  
 IF(TEST .NE. 1.) LBOUND = TLB  
 INTER= HBOUND - LBOUND  
 DELTA   = TEST - LBOUND  
 TESTLB  = TEST  
 TESTHB  = HBOUND - DELTA  
 IF (TESTLB .LT. TESTHB) GOTO 38  
 TLB = TESTLB  
 TESTLB  = TESTHB  
 TESTHB = TLB  
 DELTA  = TESTLB  - LBOUND  
 TSTHB  = HBOUND  - DELTA  
 38   CONTINUE  
 INTER   = HBOUND  - LBOUND  
 RATIO = INTER/FINTER  
C----------------------------------------------------------------------  
C DETERMINE THE NUMBER OF EXPERIMENTS REQUIRED TO HAVE               
C FINTER = 0.00001                                                   
C---------------------------------------------------------------------  
 FIBO(1)  = 1  
 FIBO(2)  = 1  
 DO 39 I   = 3,50  
    FIBO(I) = FIBO(I-1) + FIBO(I-2)  
    IF (FIBO(I) .LT. RATIO) EXPNO = I + 1  
 39      CONTINUE  
C----------------------------------------------------------------------  
C START CLOSED BOUND FIBONNACCI SEARCH                               
C---------------------------------------------------------------------  
 DO 40 EXPCNT=1, EXPNO  
 TLBV= F(TESTLB)  
 THBV= F(TESTHB)  
 IF (TLBV.GE.THBV) GO TO 30  
    LBOUND= TESTLB  
    INTER= HBOUND - LBOUND  
    DELTA= INTER - DELTA  
    TESTLB= TESTHB  
    TESTHB= HBOUND - DELTA  
    FLAG  = 1  
    GO TO 40  
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 30    CONTINUE  
    HBOUND= TESTHB  
    INTER= HBOUND - LBOUND  
    DELTA= INTER - DELTA  
    TESTHB= TESTLB  
    TESTLB= LBOUND + DELTA  
    FLAG = 0  
 40    CONTINUE  
 IF (FLAG .EQ. 1) FIBON = TESTLB  
 IF (FLAG .EQ. 0) FIBON = TESTHB  
 RETURN  
 END  
C---------------------------------------------------------------------- 
C FUNCTION EVALUATION FOR FIBONNACCI SEARCH                          
C---------------------------------------------------------------------  
 DOUBLE PRECISION FUNCTION F( K )  
 DOUBLE PRECISION K, TEST(20), X(20), S(20)  
 COMMON X, S, NTERM  
 DO 10 I=1, NTERM  
    TEST(I)= X(I) - K * S(I)  
 10    CONTINUE  
 F= -FUNCT( TEST )  
 RETURN  
 END  
C---------------------------------------------------------------------  
C CALCULATION OF COST FUNCTION                                       
C--------------------------------------------------------------------  
 DOUBLE PRECISION FUNCTION FUNCT(X)  
 DOUBLE PRECISION X(20)  
 FUNCT=5.0*X(1)*X(1)+2.0*X(2)*X(2)+2.0*X(3)*X(3)  
     &      +2.0*X(1)*X(2)+2.0*X(2)*X(3)  
     &      -2.0*X(3)*X(1) -6.0*X(3)  
 RETURN  
 END 
************************************************************************ 
     INPUT DATA :  
     NO. OF INDEPENDENT VARIABLES, NTERM  =    3  
     STOPPING CRITERION, EPS                  =    0.0001  
     STARTING POINTS, X                        =    0.00   0.00   0.00  
 
     RESULTS    :  
     ITERATION   COST FUNCTION       VALUES OF X                 K  
 
          0             0.000         0.000   0.000    0.000   0.000  
         1            -4.500        0.000   0.000    1.501   0.250  
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          2            -7.500         1.000  -1.000    2.502   0.333  
          3            -9.000         1.000  -2.002    3.003   0.167  
 
NORMAL TERMINATION OF THE BFGS PROGRAM  
 
Program Description:  
 This program uses the Broyden, Fletcher, Goldfarb and Shanno (BFGS) algorithm to 
minimize an unconstrained multivariable function having as many as twenty variables.  The 
program consists of a main program, two subroutines and three functions.  
 The three functions are as follows.  The function FUNCT is the equation for the cost 
function to be minimized.  The function F uses FUNCT for value of the cost function in the line 
search.  The function FIBON uses the values of F in an open-ended Fibonacci line search.  The 
two subroutines are SLOPE, which evaluates the partial derivatives using a forward difference 
approximation and PRINT, which prints the results of the computations.  
 The input data are the number of independent variables, starting point for the search and 
the stopping criterion, EPS.  The program will terminate when the difference between the cost 
function values of two successive iterations is less than or equal to EPS, the stopping criteria.   
 The results are the iteration number, the values of the independent variables, and the cost 
function.  Shown with the program are the input and output for the problem in Example 5-4.  
 The main program begins with an echo of the input data.  Then it proceeds from iteration 
zero, the starting point, to use the BFGS algorithm to generate successive points until the stopping 
criterion is met.  Initially, the Hessian matrix G is the identity matrix, and the gradient is computed 
using a forward difference approximation to the partial derivatives using subroutine SLOPE.  The 
Fibonacci search function, FIBON, is used to locate the minimum along the gradient line from x0 
to x1.  Then the stopping criterion is checked, and the Hessian matrix G is updated.  The value of 
the function is stored in ERROLD for future comparisons.  The search direction to the next point 
is calculated and stored in the vector S.  The value of the parameter of the line in the search 
direction, K, is calculated using FIBON to locate the next point.  The value of the function at the 
new point is calculated and stored in ERR.  The values of the iteration counter, the function at the 
new point, and the new point are printed using PRINT.  The values of the gradient at the current 
point are computed and stored in the vector GRAD.  The Hessian matrix G is updated, and the 
program returns to repeat the calculation until the error criterion is met.  
 To solve other problems, supply the equation to be minimized in the function FUNCT.  It 
is used only by the procedure FIBON.  If more than 20 variables are needed, then the CONST 
SIZE should be changed to the required number.  No other modifications are needed.  If this 
program is to be run in an 8- bit microcomputer, the real variables must be declared double 
precision to prevent underflow.  Otherwise a division by zero will occur. 
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Problems 
 
5-1.10 A Fibonacci search can be used to find the point on a line in space where a function is a 
maximum.  For the two points (1, −1, 0, 2) and (−5, −1, 3, 1) use a Fibonacci search assuming 
perfect resolution and unimodality.  
 
Give the coordinates of the points where the first two experiments would be placed assuming a 
total of five measurements will be used. What is the final interval of uncertainty on the 
coordinate axis x1?  
 
5-2.10  In the following table eight values of y are given, and y is a function of four 

independent variables.  
 
   x1  x2  x3  x4  y  
             
    0   1  −1   3   5  
    1   1  −1   3   7  
    2   1  −1   3   9  
   −1   2  −1   3   2  
    0  −1  −1   3   7  
    0   1   1   3   7  
    0   1  −1   2    
    0   2   0   3   5  
 
     a. Determine the line of steep ascent passing through the point (0, 1, −1, 3).  
     b. Determine the contour tangent hyperplane passing through (0, 1, −1, 3).  
 
5-317  Use the method of gradient partan to find the minimum of the following function 

starting at (2, 1, 3).  
 
     y = x12 + 3x22 + 5x32  
 
5-4.  For the following function draw contours on a graph for values of y of 20.0, 40.0, 

60.0 and 80.0 in the region 0 ≤ x1 ≤ 10 and 0 ≤ x2 ≤ 10.  
 
     y = x1x2  
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   Starting at point x0(4, 4) apply Pattern Search to move toward maximum and employ 

a step size δ(1/2, 1/2).  Make local explorations and accelerations (pattern moves) to 
obtain the points through b5.  

 
5-5.  In Figure 5-12 a contour map is given for a function with a maximum located in the upper 
center.  For the four multivariable search techniques, gradient search, sectioning, gradient partan 
and pattern search, sketch (precisely) the path these algorithms would take, beginning at the 
indicated starting point and going toward the maximum.  For pattern search make the step-size 
equal to one-half of the width of the grid.  The pattern search step size can be cut in half for the 
search to continue, if necessary.  This will be the resolution limit, however.  In addition, make 
brief comments about the effectiveness of these four techniques as applied to this function.  
 
 

 
 
 
5-6.  On the contour map given in Figure 5-13, sketch (precisely) the path of gradient partan, 
Powell's method and pattern search beginning at the starting point shown.  For pattern search have 
the step size initially equal to the grid shown on the contour map and reduce the step size by one-
half to have the search continue.  Reduce the step size by one-half again if necessary, to have 

Figure 5-12 Contour Map of a Function with a Maximum Located in the Upper Center for Problem 5-5
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pattern search continue.  Give a brief discussion of the performance of these methods on this 
function.  

 
 
5-7.  Newton's method is obtained from the Taylor series expansion for y(x), truncating the terms 
which are third order and higher, Equation 5-8.  Then Equation 5-12 is obtained from the quadratic 
approximation, where x is the location of the minimum of the quadratic approximation.  Discuss 
the iterative procedure that would be used to move to an optimum.  To ensure convergence to a 

Figure 5-13 Contour Map for Problem 5-6
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minimum (maximum), the value of dy(α)/dα always must be negative (positive), where α is the 
parameter of the line between points xk and xk+1 obtained from successive applications of the 
algorithm. 
 
     x = xk + α (xk+1 − xk)  

 
Explain why this restriction is required for convergence to a local minimum (maximum).  
 
 
5-8. Search for the minimum of the following function using gradient search starting at point 
 x0 (1, 1, 1).  
 
      y = x12 + x22 + x32  
 
5-9. Develop and use a simplified version of Newton's method (quadratic fit) to search for the 
minimum of the function given in Problem 5-8 starting at the same point.  Give the Taylor series 
expansion for three independent variables truncating third and higher order terms neglecting 
interacting (mixed partial derivative) terms for simplicity. Differentiate the truncated Taylor series 
equation of with respect to x1, x2 and x3 to compute the optimum of the quadratic approximation, 
x1*, x2* and x3*.  Then apply these results to minimize the function of the problem.  Compare the 
effort required for one iteration of the linear algorithm in Problem 6-8 to one iteration of the 
quadratic algorithm.  
 
5-10.  In Problem 6-7 a simplified alkylation process with three identical reactors in series is 
described.  The profit function for each reactor can be represented by an equation with elliptical 
contours, and the catalyst degradation function can be represented by a linear equation.   
 
a.  If the optimum of the profit function for an individual reactor is at F = 10 and C = 95, derive 
the profit function to be maximized and the constraint equations to be satisfied for the process.  
The profit function for one reactor is given by the following equation.  
 
  y = 150 − 6(F − 10)2 − 24(C − 95)2  
 
The constraint equations have the form y = mx + b, and the parameters m and b can be determined 
from Figure 6-32.  

 
   b.  Form the penalty function for the above problem and discuss how this form will maximize 
the profit function and satisfy the constraint equations when a search technique is used to find the 
optimum.  
 
5-11. Solve the following optimization problem by successive linear programming starting at x0 

(0, 1/2) using limits of (1, 1).  Reduce the limits by one-half if infeasible points are 
encountered.  

     
    minimize: (x1 − 2)2 + (x2 − 1)2   
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    subject to: (−1/4) x1 − x22 + 1   ≥  0  
        
       x1 − 2x2 + 1  = 0  
5-12. Solve the following optimization problem by successive linear programming starting at point 

x0 (1, 1) using limits of (1, 1).  Reduce the limits by one-half if infeasible points are 
encountered.  

   
    maximize: 4x1  +  x2    
 
    subject to:  x12 + 2x22  ≤ 20.25  
      
            x12 −  x22 ≤  8.25  
 
5-13. Solve the following optimization problem by successive linear programming starting at point 

x0 (1, 1) using limits of (1, 1).  Reduce the limits by one-half if infeasible points are 
encountered.  

   
    minimize: y = 2x12 + 2x1x2 + x22 − 20x1 − 14x2  
   
    subject to: x12 + x22 ≤ 25  
        
      x12 − x22  ≤  7  
 
5-14.26 Solve the following problem by successive linear programming starting at point (2, 1) using 

limits of (1/2, 1/2). Reduce the limits by one-half if infeasible points are encountered.  
   
    maximize: 2x12 − x1x2 + 3x22  
   
    subject to:       3x1  + 4x2  ≤ 12  
     
                   x12 −  x22  ≥  1  
  
5-15.34 Solve the following problem by successive linear programming starting at point x0 (1, 1) 

using limits of (2, 2).  Reduce the limits by one-half if infeasible points are 
encountered.  

   
    maximize: 3x12 + 2x22  
   
    subject to:    x12 +  x22 ≤ 25  
     
             9x1  −  x22  ≤ 27  
 
5-16. The following multivariable optimization problem is shown in Figure 5-7.  
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    minimize: −2x1 − 4x2 +  x12 + x22 + 5  
   
    subject to: −x1 + 2x2 ≤ 2  
     
         x1 +  x2 ≤ 4 
  
   a.  Give the successive linear programming algorithm for this problem in the form of 

Equations 6-34.  The upper and lower bounds are the same and are equal 
to 1.0. 

 
   b.  For starting point x0 = (0,0) apply the algorithm from part a to search for the 

optimum by successive linear programming.  
 
5-17. Solve Problem 5-16 by quadratic programming.  
 
5-18.26 Solve the following problem by quadratic programming.  
    
    maximize: −2x12 − x22 + 4x1 + 6x2  
   
    subject to:   x1 + 3x2 ≤ 3  
 
5-19.27 Solve the following problem by quadratic programming.  
    
    maximize: 6x1 − 2x12 + 2x1x2 − 2x22  
   
    subject to:  x1 + x2 ≤ 2  
 
5-20.28 Solve the following problem by quadratic programming.  
   
    maximize: 9x2 + x12  
   
    subject to:  x1 + 2x2 = 10  
 
5-21. Solve the following problem by quadratic programming.  
 
    minimize: 2x12 + 2x1x2 + x22 − 20x1 − 14x2   
 
    subject to:  x1 + 3x2 ≤ 5  
     
      2x1 − x2 ≤ 4 
  
5-22. Solve the following problem by the generalized reduced gradient method starting at the 

feasible point x0 (1, 1, 19) to find the optimum located at x*(4, 3, 0).  Use the optimum 
point to determine the appropriate value of the parameter of the reduced gradient line 
for one line search to arrive at the optimum.  
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    maximize: 3x12 + 2x22 −  x3        
   
    subject to:  x12 +  x22         = 25   
     
      9x1  −  x22 +  x3 = 27   
 
5-23.11 Solve the following problem by the generalized reduced gradient method.  Start at the 

point x0 = (2, 1, 3, 1) and have x1 and x4 be the basic or dependent variables and x2 
and x3 the nonbasic or independent variables.  

   
    minimize:  x12 + 4x22  
   
    subject to:  x1  + 2x2 − x3      = 1  
     
      −x1  +  x2      + x4 = 0  
 
5-24. Solve the following problem by the generalized reduced gradient method starting at point 

x0 (2, 4, 5).  Show that the value of the parameters of the reduced gradient line α1 = 
−1/20 locates the minimum of the economic model and satisfies the constraints.  

 
    minimize :   4x1  − x22 + x32 − 12  
   
    subject to:  −x12 − x22          + 20 = 0  
     
         x1         +  x3     −  7 = 0  
 
5-25.17 Find the minimum of the following function starting at the point x0 (1, 1, 1).  However, this 

time experimental error is involved; and the Kiefer-Wolfowitz procedure must be 
used, employing ak = 1/k and ck = 1/k1/4 with k = 1, 2, ..., 12.  Simulate experimental 
error by flipping a coin and adding (subtracting) 0.1 from y if the coin turns up heads 
(tails).  

 
     y = x12 + 3x22 + 5x32  
 
5-26. Solve the following problem by successive quadratic programming and the generalized 

reduced gradient method, starting at point x0 (0, 1/2), and compare these results to the 
solution given in Figure 6-8.      

   
    minimize: (x1-2)2 + (x2-1)2  
    subject to:   − ¼ x12 − x22 + 1 ≥ 0              
             x1  − 2x2 + 1 = 0   


